微手势检测与移动设备的远程交互

Katrin Wolf, Sven Mayer, Stephan Meyer
{"title":"微手势检测与移动设备的远程交互","authors":"Katrin Wolf, Sven Mayer, Stephan Meyer","doi":"10.1145/2957265.2961865","DOIUrl":null,"url":null,"abstract":"The rise of smart rings enables for ubiquitous control of computers that are wearable or mobile. We developed a ring interface using a 9 DOF IMU for detecting microgestures that can be executed while performing another task that involve hands, e.g. riding a bicycle. For the gesture classification we implemented 4 classifiers that run on the Android operating system without the need of clutch events. In a user study, we compared the success of 4 classifiers in a cycling scenario. We found that Random Forest (RF) works better for microgesture detection on Android than Dynamic Time Warping (DTW), K-Nearest-Neighbor (KNN), and than a Threshold (TH)-based approach as it has the best detection rate while it runs in real-time on Android. This work shell encourages other researchers to develop further mobile applications for using remote microgesture control in encumbered contexts.","PeriodicalId":131157,"journal":{"name":"Proceedings of the 18th International Conference on Human-Computer Interaction with Mobile Devices and Services Adjunct","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Microgesture detection for remote interaction with mobile devices\",\"authors\":\"Katrin Wolf, Sven Mayer, Stephan Meyer\",\"doi\":\"10.1145/2957265.2961865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rise of smart rings enables for ubiquitous control of computers that are wearable or mobile. We developed a ring interface using a 9 DOF IMU for detecting microgestures that can be executed while performing another task that involve hands, e.g. riding a bicycle. For the gesture classification we implemented 4 classifiers that run on the Android operating system without the need of clutch events. In a user study, we compared the success of 4 classifiers in a cycling scenario. We found that Random Forest (RF) works better for microgesture detection on Android than Dynamic Time Warping (DTW), K-Nearest-Neighbor (KNN), and than a Threshold (TH)-based approach as it has the best detection rate while it runs in real-time on Android. This work shell encourages other researchers to develop further mobile applications for using remote microgesture control in encumbered contexts.\",\"PeriodicalId\":131157,\"journal\":{\"name\":\"Proceedings of the 18th International Conference on Human-Computer Interaction with Mobile Devices and Services Adjunct\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 18th International Conference on Human-Computer Interaction with Mobile Devices and Services Adjunct\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2957265.2961865\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 18th International Conference on Human-Computer Interaction with Mobile Devices and Services Adjunct","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2957265.2961865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

智能戒指的兴起使得对可穿戴或移动电脑的无处不在的控制成为可能。我们开发了一个使用9自由度IMU的环形界面,用于检测在执行另一项涉及手的任务时可以执行的微手势,例如骑自行车。对于手势分类,我们实现了4个在Android操作系统上运行的分类器,而不需要离合器事件。在一项用户研究中,我们比较了4种分类器在循环场景中的成功。我们发现随机森林(RF)比动态时间扭曲(DTW)、k -近邻(KNN)和基于阈值(TH)的方法更适合Android上的微手势检测,因为它在Android上实时运行时具有最佳的检测率。这项工作鼓励其他研究人员开发进一步的移动应用程序,在有碍环境中使用远程微手势控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microgesture detection for remote interaction with mobile devices
The rise of smart rings enables for ubiquitous control of computers that are wearable or mobile. We developed a ring interface using a 9 DOF IMU for detecting microgestures that can be executed while performing another task that involve hands, e.g. riding a bicycle. For the gesture classification we implemented 4 classifiers that run on the Android operating system without the need of clutch events. In a user study, we compared the success of 4 classifiers in a cycling scenario. We found that Random Forest (RF) works better for microgesture detection on Android than Dynamic Time Warping (DTW), K-Nearest-Neighbor (KNN), and than a Threshold (TH)-based approach as it has the best detection rate while it runs in real-time on Android. This work shell encourages other researchers to develop further mobile applications for using remote microgesture control in encumbered contexts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信