关于多线程嵌入式龙格-库塔方法的能耗和精度

T. Rauber, G. Rünger
{"title":"关于多线程嵌入式龙格-库塔方法的能耗和精度","authors":"T. Rauber, G. Rünger","doi":"10.1109/HPCS48598.2019.9188214","DOIUrl":null,"url":null,"abstract":"The family of Runge-Kutta (RK) methods provides iterative methods for the numerical approximation of solutions of ordinary differential equations (ODEs). Embedded RK methods combine the approximation computation with a step-size control exploiting an embedded solution and a predefined tolerance value. An important aspect of the computation is the accuracy that refers to how closely the approximation solution agrees with the true solution of the ODE system. The computation of solutions with a high accuracy might have a high computational demand and a high energy consumption. This article investigates the execution time and the energy consumption for a varying number of cores and varying operational frequencies. Additionally the influence of the predefined tolerance value and the resulting numerical accuracy is considered for two different types of ODE systems with different execution behavior.","PeriodicalId":371856,"journal":{"name":"2019 International Conference on High Performance Computing & Simulation (HPCS)","volume":"192 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Energy Consumption and Accuracy of Multithreaded Embedded Runge-Kutta Methods\",\"authors\":\"T. Rauber, G. Rünger\",\"doi\":\"10.1109/HPCS48598.2019.9188214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The family of Runge-Kutta (RK) methods provides iterative methods for the numerical approximation of solutions of ordinary differential equations (ODEs). Embedded RK methods combine the approximation computation with a step-size control exploiting an embedded solution and a predefined tolerance value. An important aspect of the computation is the accuracy that refers to how closely the approximation solution agrees with the true solution of the ODE system. The computation of solutions with a high accuracy might have a high computational demand and a high energy consumption. This article investigates the execution time and the energy consumption for a varying number of cores and varying operational frequencies. Additionally the influence of the predefined tolerance value and the resulting numerical accuracy is considered for two different types of ODE systems with different execution behavior.\",\"PeriodicalId\":371856,\"journal\":{\"name\":\"2019 International Conference on High Performance Computing & Simulation (HPCS)\",\"volume\":\"192 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on High Performance Computing & Simulation (HPCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPCS48598.2019.9188214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on High Performance Computing & Simulation (HPCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCS48598.2019.9188214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

龙格-库塔(RK)方法族为常微分方程(ODEs)的数值逼近提供了迭代方法。嵌入式RK方法将近似计算与利用嵌入式解决方案和预定义容差值的步长控制相结合。计算的一个重要方面是精度,它指的是近似解与ODE系统的真实解的一致程度。高精度解的计算可能会有高的计算量和高能量消耗。本文研究了不同核数和不同操作频率下的执行时间和能耗。此外,对于两种不同类型的具有不同执行行为的ODE系统,考虑了预定义容差值和由此产生的数值精度的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Energy Consumption and Accuracy of Multithreaded Embedded Runge-Kutta Methods
The family of Runge-Kutta (RK) methods provides iterative methods for the numerical approximation of solutions of ordinary differential equations (ODEs). Embedded RK methods combine the approximation computation with a step-size control exploiting an embedded solution and a predefined tolerance value. An important aspect of the computation is the accuracy that refers to how closely the approximation solution agrees with the true solution of the ODE system. The computation of solutions with a high accuracy might have a high computational demand and a high energy consumption. This article investigates the execution time and the energy consumption for a varying number of cores and varying operational frequencies. Additionally the influence of the predefined tolerance value and the resulting numerical accuracy is considered for two different types of ODE systems with different execution behavior.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信