具有饱和和扰动的机器人系统的神经自适应控制

Shuai Ding, Jinzhu Peng, Yan Liu, Yage Wu
{"title":"具有饱和和扰动的机器人系统的神经自适应控制","authors":"Shuai Ding, Jinzhu Peng, Yan Liu, Yage Wu","doi":"10.1109/CACRE58689.2023.10208442","DOIUrl":null,"url":null,"abstract":"This paper proposes a neural adaptive control (NAC) strategy for the robotic systems with saturation and disturbance. The strategy involves using a neural network (NN) to estimate the robot’s dynamic model and constructing a compensator to mitigate the impact of input saturation. To obtain estimated velocities and external disturbances in the robotic systems without prior knowledge of the system model, an NN-based extended state observer (NNBESO) is designed. Based on the designed error compensation term and NNBESO, NAC is proposed to achieve the tracking for the desired trajectory under input saturation and external disturbance. Finally, the proposed NNBESO-based NAC strategy is verified by the simulation experiments on a 2 rigid-link robotic manipulator with input saturation and system disturbances, and the results demonstrate the effectiveness of the proposed NNBESO-based NAC strategy.","PeriodicalId":447007,"journal":{"name":"2023 8th International Conference on Automation, Control and Robotics Engineering (CACRE)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural Adaptive Control for Robotic Systems With Saturation and Disturbance\",\"authors\":\"Shuai Ding, Jinzhu Peng, Yan Liu, Yage Wu\",\"doi\":\"10.1109/CACRE58689.2023.10208442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a neural adaptive control (NAC) strategy for the robotic systems with saturation and disturbance. The strategy involves using a neural network (NN) to estimate the robot’s dynamic model and constructing a compensator to mitigate the impact of input saturation. To obtain estimated velocities and external disturbances in the robotic systems without prior knowledge of the system model, an NN-based extended state observer (NNBESO) is designed. Based on the designed error compensation term and NNBESO, NAC is proposed to achieve the tracking for the desired trajectory under input saturation and external disturbance. Finally, the proposed NNBESO-based NAC strategy is verified by the simulation experiments on a 2 rigid-link robotic manipulator with input saturation and system disturbances, and the results demonstrate the effectiveness of the proposed NNBESO-based NAC strategy.\",\"PeriodicalId\":447007,\"journal\":{\"name\":\"2023 8th International Conference on Automation, Control and Robotics Engineering (CACRE)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 8th International Conference on Automation, Control and Robotics Engineering (CACRE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CACRE58689.2023.10208442\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 8th International Conference on Automation, Control and Robotics Engineering (CACRE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CACRE58689.2023.10208442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对具有饱和和扰动的机器人系统,提出了一种神经网络自适应控制策略。该策略包括使用神经网络来估计机器人的动态模型,并构建补偿器来减轻输入饱和的影响。为了在不知道系统模型的情况下获得机器人系统的估计速度和外部干扰,设计了基于神经网络的扩展状态观测器(NNBESO)。基于所设计的误差补偿项和NNBESO,提出了在输入饱和和外部干扰情况下对期望轨迹的NAC跟踪方法。最后,在具有输入饱和和系统扰动的2刚杆机械臂上进行了仿真实验,验证了所提出的基于nnbesc的NAC策略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural Adaptive Control for Robotic Systems With Saturation and Disturbance
This paper proposes a neural adaptive control (NAC) strategy for the robotic systems with saturation and disturbance. The strategy involves using a neural network (NN) to estimate the robot’s dynamic model and constructing a compensator to mitigate the impact of input saturation. To obtain estimated velocities and external disturbances in the robotic systems without prior knowledge of the system model, an NN-based extended state observer (NNBESO) is designed. Based on the designed error compensation term and NNBESO, NAC is proposed to achieve the tracking for the desired trajectory under input saturation and external disturbance. Finally, the proposed NNBESO-based NAC strategy is verified by the simulation experiments on a 2 rigid-link robotic manipulator with input saturation and system disturbances, and the results demonstrate the effectiveness of the proposed NNBESO-based NAC strategy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信