我的智能手机知道我饿了

Fanglin Chen, Rui Wang, Xia Zhou, A. Campbell
{"title":"我的智能手机知道我饿了","authors":"Fanglin Chen, Rui Wang, Xia Zhou, A. Campbell","doi":"10.1145/2611264.2611270","DOIUrl":null,"url":null,"abstract":"Can a smartphone learn our eating habits without the user being in the loop? Clearly, the phone could use checkins based on location to infer that if you were in a cafe, for example, there is a good possibility you might eat or drink something. In this paper, we use inferred behavioral data and location history to predict if you are going to eat or not in the near future. These predictors could serve as a basis for future eating trackers that work unobtrusively in the background of your phone rather than relying on burdensome user input. In this paper, we report on a simple model that predicts the food purchases of a group of undergraduate college students (N=25) using inferred behavioral and location data from smartphones. The 10-week study uses the dining related purchase records from student college cards as ground-truth to validate our prediction model. Initial results show that we can predict food and drink purchases with an accuracy of 74% using three weeks of training data.","PeriodicalId":131326,"journal":{"name":"Proceedings of the 2014 workshop on physical analytics","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"My smartphone knows i am hungry\",\"authors\":\"Fanglin Chen, Rui Wang, Xia Zhou, A. Campbell\",\"doi\":\"10.1145/2611264.2611270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Can a smartphone learn our eating habits without the user being in the loop? Clearly, the phone could use checkins based on location to infer that if you were in a cafe, for example, there is a good possibility you might eat or drink something. In this paper, we use inferred behavioral data and location history to predict if you are going to eat or not in the near future. These predictors could serve as a basis for future eating trackers that work unobtrusively in the background of your phone rather than relying on burdensome user input. In this paper, we report on a simple model that predicts the food purchases of a group of undergraduate college students (N=25) using inferred behavioral and location data from smartphones. The 10-week study uses the dining related purchase records from student college cards as ground-truth to validate our prediction model. Initial results show that we can predict food and drink purchases with an accuracy of 74% using three weeks of training data.\",\"PeriodicalId\":131326,\"journal\":{\"name\":\"Proceedings of the 2014 workshop on physical analytics\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2014 workshop on physical analytics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2611264.2611270\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 workshop on physical analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2611264.2611270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

智能手机能在用户不参与的情况下学习我们的饮食习惯吗?显然,手机可以根据位置来推断,例如,如果你在一家咖啡馆,你很可能会吃或喝一些东西。在本文中,我们使用推断的行为数据和位置历史来预测你是否会在不久的将来吃东西。这些预测可以作为未来饮食追踪器的基础,在你的手机后台不引人注目地工作,而不是依赖于繁琐的用户输入。在本文中,我们报告了一个简单的模型,该模型使用智能手机推断的行为和位置数据来预测一群本科生(N=25)的食品购买行为。为期10周的研究使用学生大学卡上的餐饮相关购买记录作为基础事实来验证我们的预测模型。初步结果表明,我们可以使用三周的训练数据,以74%的准确率预测食品和饮料的购买情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
My smartphone knows i am hungry
Can a smartphone learn our eating habits without the user being in the loop? Clearly, the phone could use checkins based on location to infer that if you were in a cafe, for example, there is a good possibility you might eat or drink something. In this paper, we use inferred behavioral data and location history to predict if you are going to eat or not in the near future. These predictors could serve as a basis for future eating trackers that work unobtrusively in the background of your phone rather than relying on burdensome user input. In this paper, we report on a simple model that predicts the food purchases of a group of undergraduate college students (N=25) using inferred behavioral and location data from smartphones. The 10-week study uses the dining related purchase records from student college cards as ground-truth to validate our prediction model. Initial results show that we can predict food and drink purchases with an accuracy of 74% using three weeks of training data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信