时间矩定位的层次深度残差推理

Ziyang Ma, Xianjing Han, Xuemeng Song, Yiran Cui, Liqiang Nie
{"title":"时间矩定位的层次深度残差推理","authors":"Ziyang Ma, Xianjing Han, Xuemeng Song, Yiran Cui, Liqiang Nie","doi":"10.1145/3469877.3490595","DOIUrl":null,"url":null,"abstract":"Temporal Moment Localization (TML) in untrimmed videos is a challenging task in the field of multimedia, which aims at localizing the start and end points of the activity in the video, described by a sentence query. Existing methods mainly focus on mining the correlation between video and sentence representations or investigating the fusion manner of the two modalities. These works mainly understand the video and sentence coarsely, ignoring the fact that a sentence can be understood from various semantics, and the dominant words affecting the moment localization in the semantics are the action and object reference. Toward this end, we propose a Hierarchical Deep Residual Reasoning (HDRR) model, which decomposes the video and sentence into multi-level representations with different semantics to achieve a finer-grained localization. Furthermore, considering that videos with different resolution and sentences with different length have different difficulty in understanding, we design the simple yet effective Res-BiGRUs for feature fusion, which is able to grasp the useful information in a self-adapting manner. Extensive experiments conducted on Charades-STA and ActivityNet-Captions datasets demonstrate the superiority of our HDRR model compared with other state-of-the-art methods.","PeriodicalId":210974,"journal":{"name":"ACM Multimedia Asia","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Hierarchical Deep Residual Reasoning for Temporal Moment Localization\",\"authors\":\"Ziyang Ma, Xianjing Han, Xuemeng Song, Yiran Cui, Liqiang Nie\",\"doi\":\"10.1145/3469877.3490595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Temporal Moment Localization (TML) in untrimmed videos is a challenging task in the field of multimedia, which aims at localizing the start and end points of the activity in the video, described by a sentence query. Existing methods mainly focus on mining the correlation between video and sentence representations or investigating the fusion manner of the two modalities. These works mainly understand the video and sentence coarsely, ignoring the fact that a sentence can be understood from various semantics, and the dominant words affecting the moment localization in the semantics are the action and object reference. Toward this end, we propose a Hierarchical Deep Residual Reasoning (HDRR) model, which decomposes the video and sentence into multi-level representations with different semantics to achieve a finer-grained localization. Furthermore, considering that videos with different resolution and sentences with different length have different difficulty in understanding, we design the simple yet effective Res-BiGRUs for feature fusion, which is able to grasp the useful information in a self-adapting manner. Extensive experiments conducted on Charades-STA and ActivityNet-Captions datasets demonstrate the superiority of our HDRR model compared with other state-of-the-art methods.\",\"PeriodicalId\":210974,\"journal\":{\"name\":\"ACM Multimedia Asia\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Multimedia Asia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3469877.3490595\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Multimedia Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3469877.3490595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在多媒体领域中,未修剪视频的时间瞬间定位(TML)是一项具有挑战性的任务,它旨在定位视频中活动的起始点和结束点,并用句子查询来描述。现有的方法主要集中在挖掘视频和句子表示之间的相关性或研究两种模式的融合方式。这些作品主要是粗略地理解视频和句子,忽略了一个句子可以从各种语义上理解,在语义上影响时刻定位的主导词是动作和对象指称。为此,我们提出了一种层次深度残差推理(HDRR)模型,该模型将视频和句子分解为具有不同语义的多级表示,以实现更细粒度的定位。此外,考虑到不同分辨率的视频和不同长度的句子具有不同的理解难度,我们设计了简单有效的Res-BiGRUs进行特征融合,能够以自适应的方式抓取有用信息。在Charades-STA和ActivityNet-Captions数据集上进行的大量实验表明,与其他最先进的方法相比,我们的HDRR模型具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchical Deep Residual Reasoning for Temporal Moment Localization
Temporal Moment Localization (TML) in untrimmed videos is a challenging task in the field of multimedia, which aims at localizing the start and end points of the activity in the video, described by a sentence query. Existing methods mainly focus on mining the correlation between video and sentence representations or investigating the fusion manner of the two modalities. These works mainly understand the video and sentence coarsely, ignoring the fact that a sentence can be understood from various semantics, and the dominant words affecting the moment localization in the semantics are the action and object reference. Toward this end, we propose a Hierarchical Deep Residual Reasoning (HDRR) model, which decomposes the video and sentence into multi-level representations with different semantics to achieve a finer-grained localization. Furthermore, considering that videos with different resolution and sentences with different length have different difficulty in understanding, we design the simple yet effective Res-BiGRUs for feature fusion, which is able to grasp the useful information in a self-adapting manner. Extensive experiments conducted on Charades-STA and ActivityNet-Captions datasets demonstrate the superiority of our HDRR model compared with other state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信