基于保持相似性布隆编码的DGA检测

Lasse Nitz, Avikarsha Mandal
{"title":"基于保持相似性布隆编码的DGA检测","authors":"Lasse Nitz, Avikarsha Mandal","doi":"10.1145/3590777.3590795","DOIUrl":null,"url":null,"abstract":"The sanitization of concise data samples can be challenging, as they do not provide a clear distinction between sensitive and non-sensitive parts within individual samples. In this context, traditional sanitization and anonymization measures are not applicable. We consider the detection of algorithmically generated domains through machine learning as an example of such a case, where the benign samples may leak sensitive information. Within this scenario, we evaluate the use of a similarity-preserving Bloom encoding technique to obscure the training samples.","PeriodicalId":231403,"journal":{"name":"Proceedings of the 2023 European Interdisciplinary Cybersecurity Conference","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DGA Detection Using Similarity-Preserving Bloom Encodings\",\"authors\":\"Lasse Nitz, Avikarsha Mandal\",\"doi\":\"10.1145/3590777.3590795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The sanitization of concise data samples can be challenging, as they do not provide a clear distinction between sensitive and non-sensitive parts within individual samples. In this context, traditional sanitization and anonymization measures are not applicable. We consider the detection of algorithmically generated domains through machine learning as an example of such a case, where the benign samples may leak sensitive information. Within this scenario, we evaluate the use of a similarity-preserving Bloom encoding technique to obscure the training samples.\",\"PeriodicalId\":231403,\"journal\":{\"name\":\"Proceedings of the 2023 European Interdisciplinary Cybersecurity Conference\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2023 European Interdisciplinary Cybersecurity Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3590777.3590795\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 European Interdisciplinary Cybersecurity Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3590777.3590795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

简明数据样本的消毒可能具有挑战性,因为它们不能明确区分单个样本中的敏感部分和非敏感部分。在这种情况下,传统的卫生处理和匿名化措施不适用。我们考虑通过机器学习检测算法生成的域作为这种情况的一个例子,其中良性样本可能泄露敏感信息。在这种情况下,我们评估了使用保持相似性的Bloom编码技术来模糊训练样本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DGA Detection Using Similarity-Preserving Bloom Encodings
The sanitization of concise data samples can be challenging, as they do not provide a clear distinction between sensitive and non-sensitive parts within individual samples. In this context, traditional sanitization and anonymization measures are not applicable. We consider the detection of algorithmically generated domains through machine learning as an example of such a case, where the benign samples may leak sensitive information. Within this scenario, we evaluate the use of a similarity-preserving Bloom encoding technique to obscure the training samples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信