C. Petra, M. Troya, N. Petra, Youngsoo Choi, G. Oxberry, D. Tortorelli
{"title":"基于有限元离散化的准牛顿内点法求解pde约束优化问题","authors":"C. Petra, M. Troya, N. Petra, Youngsoo Choi, G. Oxberry, D. Tortorelli","doi":"10.1080/10556788.2022.2117354","DOIUrl":null,"url":null,"abstract":"ABSTRACT We present a quasi-Newton interior-point method appropriate for optimization problems with pointwise inequality constraints in Hilbert function spaces. Among others, our methodology applies to optimization problems constrained by partial differential equations (PDEs) that are posed in a reduced-space formulation and have bounds or inequality constraints on the optimized parameter function. We first introduce the formalization of an infinite-dimensional quasi-Newton interior-point algorithm using secant BFGS updates and then proceed to derive a discretized interior-point method capable of working with a wide range of finite element discretization schemes. We also discuss and address mathematical and software interface issues that are pervasive when existing off-the-shelf PDE solvers are to be used with off-the-shelf nonlinear programming solvers. Finally, we elaborate on the numerical and parallel computing strengths and limitations of the proposed methodology on several classes of PDE-constrained problems.","PeriodicalId":124811,"journal":{"name":"Optimization Methods and Software","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the implementation of a quasi-Newton interior-point method for PDE-constrained optimization using finite element discretizations\",\"authors\":\"C. Petra, M. Troya, N. Petra, Youngsoo Choi, G. Oxberry, D. Tortorelli\",\"doi\":\"10.1080/10556788.2022.2117354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT We present a quasi-Newton interior-point method appropriate for optimization problems with pointwise inequality constraints in Hilbert function spaces. Among others, our methodology applies to optimization problems constrained by partial differential equations (PDEs) that are posed in a reduced-space formulation and have bounds or inequality constraints on the optimized parameter function. We first introduce the formalization of an infinite-dimensional quasi-Newton interior-point algorithm using secant BFGS updates and then proceed to derive a discretized interior-point method capable of working with a wide range of finite element discretization schemes. We also discuss and address mathematical and software interface issues that are pervasive when existing off-the-shelf PDE solvers are to be used with off-the-shelf nonlinear programming solvers. Finally, we elaborate on the numerical and parallel computing strengths and limitations of the proposed methodology on several classes of PDE-constrained problems.\",\"PeriodicalId\":124811,\"journal\":{\"name\":\"Optimization Methods and Software\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimization Methods and Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10556788.2022.2117354\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Methods and Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10556788.2022.2117354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the implementation of a quasi-Newton interior-point method for PDE-constrained optimization using finite element discretizations
ABSTRACT We present a quasi-Newton interior-point method appropriate for optimization problems with pointwise inequality constraints in Hilbert function spaces. Among others, our methodology applies to optimization problems constrained by partial differential equations (PDEs) that are posed in a reduced-space formulation and have bounds or inequality constraints on the optimized parameter function. We first introduce the formalization of an infinite-dimensional quasi-Newton interior-point algorithm using secant BFGS updates and then proceed to derive a discretized interior-point method capable of working with a wide range of finite element discretization schemes. We also discuss and address mathematical and software interface issues that are pervasive when existing off-the-shelf PDE solvers are to be used with off-the-shelf nonlinear programming solvers. Finally, we elaborate on the numerical and parallel computing strengths and limitations of the proposed methodology on several classes of PDE-constrained problems.