基于本体的语义注释器的经验评价

Srécko Joksimovíc, J. Jovanović, D. Gašević, A. Zouaq, Z. Jeremic
{"title":"基于本体的语义注释器的经验评价","authors":"Srécko Joksimovíc, J. Jovanović, D. Gašević, A. Zouaq, Z. Jeremic","doi":"10.1145/2479832.2479855","DOIUrl":null,"url":null,"abstract":"One of the most important prerequisites for achieving the Semantic Web vision is semantic annotation of data/resources. Semantic annotation enriches unstructured and/or semistructured content with a context that is further linked to the structured domain-specific knowledge. In particular, ontologybased semantic annotators enable the selection of a specific ontology to annotate content. This paper presents results of an empirical study of recent ontology-based annotators, namely Stanbol, KIM, and SDArch. Specifically, we evaluated the robustness of these annotators with respect to specific features of ontology concepts such as the length of concepts? labels and their linguistic categories (e.g., prepositions and conjunctions). Our results show that although significantly correlated according to most of the conducted evaluations, tools still exhibit their unique features that could be a topic of new research.","PeriodicalId":388497,"journal":{"name":"Proceedings of the seventh international conference on Knowledge capture","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"An empirical evaluation of ontology-based semantic annotators\",\"authors\":\"Srécko Joksimovíc, J. Jovanović, D. Gašević, A. Zouaq, Z. Jeremic\",\"doi\":\"10.1145/2479832.2479855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the most important prerequisites for achieving the Semantic Web vision is semantic annotation of data/resources. Semantic annotation enriches unstructured and/or semistructured content with a context that is further linked to the structured domain-specific knowledge. In particular, ontologybased semantic annotators enable the selection of a specific ontology to annotate content. This paper presents results of an empirical study of recent ontology-based annotators, namely Stanbol, KIM, and SDArch. Specifically, we evaluated the robustness of these annotators with respect to specific features of ontology concepts such as the length of concepts? labels and their linguistic categories (e.g., prepositions and conjunctions). Our results show that although significantly correlated according to most of the conducted evaluations, tools still exhibit their unique features that could be a topic of new research.\",\"PeriodicalId\":388497,\"journal\":{\"name\":\"Proceedings of the seventh international conference on Knowledge capture\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the seventh international conference on Knowledge capture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2479832.2479855\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the seventh international conference on Knowledge capture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2479832.2479855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

实现语义Web愿景的最重要的先决条件之一是数据/资源的语义注释。语义注释丰富了具有上下文的非结构化和/或半结构化内容,该上下文进一步链接到结构化领域特定知识。特别是,基于本体的语义注释器允许选择特定的本体来注释内容。本文介绍了最近基于本体的注释器(即Stanbol, KIM和sparch)的实证研究结果。具体来说,我们根据本体概念的特定特征(如概念的长度)评估了这些注释器的鲁棒性。标签及其语言范畴(如介词和连词)。我们的研究结果表明,尽管根据大多数已进行的评估,这些工具显着相关,但它们仍然表现出其独特的特征,这可能是一个新的研究主题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An empirical evaluation of ontology-based semantic annotators
One of the most important prerequisites for achieving the Semantic Web vision is semantic annotation of data/resources. Semantic annotation enriches unstructured and/or semistructured content with a context that is further linked to the structured domain-specific knowledge. In particular, ontologybased semantic annotators enable the selection of a specific ontology to annotate content. This paper presents results of an empirical study of recent ontology-based annotators, namely Stanbol, KIM, and SDArch. Specifically, we evaluated the robustness of these annotators with respect to specific features of ontology concepts such as the length of concepts? labels and their linguistic categories (e.g., prepositions and conjunctions). Our results show that although significantly correlated according to most of the conducted evaluations, tools still exhibit their unique features that could be a topic of new research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信