S. Tyaginov, M. Bina, J. Franco, Y. Wimmer, D. Osintsev, B. Kaczer, T. Grasser
{"title":"超尺度mosfet热载流子退化的预测物理模型","authors":"S. Tyaginov, M. Bina, J. Franco, Y. Wimmer, D. Osintsev, B. Kaczer, T. Grasser","doi":"10.1109/SISPAD.2014.6931570","DOIUrl":null,"url":null,"abstract":"We present and validate a novel physics-based model for hot-carrier degradation. The model incorporates such essential ingredients as a superposition of the multivibrational bond dissociation process and single-carrier mechanism, dispersion of the bond-breakage energy, interaction of the electric field and the dipole moment of the bond, and electron-electron scattering. The main requirement is that the model has to be able to cover HCD observed in a family of MOSFETs of identical architecture but with different gate lengths under diverse stress conditions using a unique set of parameters.","PeriodicalId":101858,"journal":{"name":"2014 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"A predictive physical model for hot-carrier degradation in ultra-scaled MOSFETs\",\"authors\":\"S. Tyaginov, M. Bina, J. Franco, Y. Wimmer, D. Osintsev, B. Kaczer, T. Grasser\",\"doi\":\"10.1109/SISPAD.2014.6931570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present and validate a novel physics-based model for hot-carrier degradation. The model incorporates such essential ingredients as a superposition of the multivibrational bond dissociation process and single-carrier mechanism, dispersion of the bond-breakage energy, interaction of the electric field and the dipole moment of the bond, and electron-electron scattering. The main requirement is that the model has to be able to cover HCD observed in a family of MOSFETs of identical architecture but with different gate lengths under diverse stress conditions using a unique set of parameters.\",\"PeriodicalId\":101858,\"journal\":{\"name\":\"2014 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SISPAD.2014.6931570\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISPAD.2014.6931570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A predictive physical model for hot-carrier degradation in ultra-scaled MOSFETs
We present and validate a novel physics-based model for hot-carrier degradation. The model incorporates such essential ingredients as a superposition of the multivibrational bond dissociation process and single-carrier mechanism, dispersion of the bond-breakage energy, interaction of the electric field and the dipole moment of the bond, and electron-electron scattering. The main requirement is that the model has to be able to cover HCD observed in a family of MOSFETs of identical architecture but with different gate lengths under diverse stress conditions using a unique set of parameters.