{"title":"微分方程生成的理想","authors":"O. Kaptsov, Олег Викторович Капцов","doi":"10.17516/1997-1397-2020-13-2-170-186","DOIUrl":null,"url":null,"abstract":"Abstract. We propose a new algebraic approach to study compatibility of partial differential equations. The approach uses concepts from commutative algebra, algebraic geometry and Gröbner bases to clarify crucial notions concerning compatibility such as passivity and reducibility. One obtains sufficient conditions for a differential system to be passive and proves that such systems generate manifolds in the jet space. Some examples of constructions of passive systems associated with the sinh-Cordon equation are given.","PeriodicalId":422202,"journal":{"name":"Journal of Siberian Federal University. Mathematics and Physics","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ideals Generated by Differential Equations\",\"authors\":\"O. Kaptsov, Олег Викторович Капцов\",\"doi\":\"10.17516/1997-1397-2020-13-2-170-186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. We propose a new algebraic approach to study compatibility of partial differential equations. The approach uses concepts from commutative algebra, algebraic geometry and Gröbner bases to clarify crucial notions concerning compatibility such as passivity and reducibility. One obtains sufficient conditions for a differential system to be passive and proves that such systems generate manifolds in the jet space. Some examples of constructions of passive systems associated with the sinh-Cordon equation are given.\",\"PeriodicalId\":422202,\"journal\":{\"name\":\"Journal of Siberian Federal University. Mathematics and Physics\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Siberian Federal University. Mathematics and Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17516/1997-1397-2020-13-2-170-186\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Siberian Federal University. Mathematics and Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17516/1997-1397-2020-13-2-170-186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Abstract. We propose a new algebraic approach to study compatibility of partial differential equations. The approach uses concepts from commutative algebra, algebraic geometry and Gröbner bases to clarify crucial notions concerning compatibility such as passivity and reducibility. One obtains sufficient conditions for a differential system to be passive and proves that such systems generate manifolds in the jet space. Some examples of constructions of passive systems associated with the sinh-Cordon equation are given.