Turbine:一个分布式内存数据流引擎,用于极端规模的多任务应用程序

SWEET '12 Pub Date : 2012-05-20 DOI:10.1145/2443416.2443421
J. Wozniak, Timothy G. Armstrong, K. Maheshwari, E. Lusk, D. Katz, M. Wilde, Ian T Foster
{"title":"Turbine:一个分布式内存数据流引擎,用于极端规模的多任务应用程序","authors":"J. Wozniak, Timothy G. Armstrong, K. Maheshwari, E. Lusk, D. Katz, M. Wilde, Ian T Foster","doi":"10.1145/2443416.2443421","DOIUrl":null,"url":null,"abstract":"Efficiently utilizing the rapidly increasing concurrency of multi-petaflop computing systems is a significant programming challenge. One approach is to structure applications with an upper layer of many loosely-coupled coarse-grained tasks, each comprising a tightly-coupled parallel function or program. \"Many-task\" programming models such as functional parallel dataflow may be used at the upper layer to generate massive numbers of tasks, each of which generates significant tighly-coupled parallelism at the lower level via multithreading, message passing, and/or partitioned global address spaces. At large scales, however, the management of task distribution, data dependencies, and inter-task data movement is a significant performance challenge. In this work, we describe Turbine, a new highly scalable and distributed many-task dataflow engine. Turbine executes a generalized many-task intermediate representation with automated self-distribution, and is scalable to multi-petaflop infrastructures. We present here the architecture of Turbine and its performance on highly concurrent systems.","PeriodicalId":143151,"journal":{"name":"SWEET '12","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Turbine: a distributed-memory dataflow engine for extreme-scale many-task applications\",\"authors\":\"J. Wozniak, Timothy G. Armstrong, K. Maheshwari, E. Lusk, D. Katz, M. Wilde, Ian T Foster\",\"doi\":\"10.1145/2443416.2443421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Efficiently utilizing the rapidly increasing concurrency of multi-petaflop computing systems is a significant programming challenge. One approach is to structure applications with an upper layer of many loosely-coupled coarse-grained tasks, each comprising a tightly-coupled parallel function or program. \\\"Many-task\\\" programming models such as functional parallel dataflow may be used at the upper layer to generate massive numbers of tasks, each of which generates significant tighly-coupled parallelism at the lower level via multithreading, message passing, and/or partitioned global address spaces. At large scales, however, the management of task distribution, data dependencies, and inter-task data movement is a significant performance challenge. In this work, we describe Turbine, a new highly scalable and distributed many-task dataflow engine. Turbine executes a generalized many-task intermediate representation with automated self-distribution, and is scalable to multi-petaflop infrastructures. We present here the architecture of Turbine and its performance on highly concurrent systems.\",\"PeriodicalId\":143151,\"journal\":{\"name\":\"SWEET '12\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SWEET '12\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2443416.2443421\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SWEET '12","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2443416.2443421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

有效地利用快速增加的千万亿次计算系统的并发性是一个重大的编程挑战。一种方法是使用由许多松散耦合的粗粒度任务组成的上层来构建应用程序,每个任务都包含一个紧密耦合的并行功能或程序。“多任务”编程模型(如功能并行数据流)可以在上层用于生成大量任务,每个任务通过多线程、消息传递和/或分区的全局地址空间在低层生成重要的紧密耦合并行性。然而,在大范围内,任务分布、数据依赖关系和任务间数据移动的管理是一个重大的性能挑战。在这项工作中,我们描述了涡轮,一个新的高度可扩展和分布式多任务数据流引擎。涡轮机执行一种具有自动自分配的广义多任务中间表示,可扩展到千万亿次的基础设施。本文介绍了汽轮机的结构及其在高并发系统上的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Turbine: a distributed-memory dataflow engine for extreme-scale many-task applications
Efficiently utilizing the rapidly increasing concurrency of multi-petaflop computing systems is a significant programming challenge. One approach is to structure applications with an upper layer of many loosely-coupled coarse-grained tasks, each comprising a tightly-coupled parallel function or program. "Many-task" programming models such as functional parallel dataflow may be used at the upper layer to generate massive numbers of tasks, each of which generates significant tighly-coupled parallelism at the lower level via multithreading, message passing, and/or partitioned global address spaces. At large scales, however, the management of task distribution, data dependencies, and inter-task data movement is a significant performance challenge. In this work, we describe Turbine, a new highly scalable and distributed many-task dataflow engine. Turbine executes a generalized many-task intermediate representation with automated self-distribution, and is scalable to multi-petaflop infrastructures. We present here the architecture of Turbine and its performance on highly concurrent systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信