基于卷积神经网络的RGB图像像素世界坐标预测

Jian Wu, Liwei Ma, Xiaolin Hu
{"title":"基于卷积神经网络的RGB图像像素世界坐标预测","authors":"Jian Wu, Liwei Ma, Xiaolin Hu","doi":"10.1109/ICICIP.2016.7885894","DOIUrl":null,"url":null,"abstract":"Convolutional Neural Networks (CNNs) have achieved great successes in many computer vision tasks and have been applied to pose regression for camera relocalization. Traditional Simultaneously Localization and Mapping (SLAM) approaches use correspondences between camera coordinates and world coordinates to estimate camera pose. In this paper, we present a new camera relocalization method including pixels' world coordinates regression with CNNs and camera pose optimization. We also explore the different characteristics of CNNs and SCoRe Forests on world coordinates regression. Experiments show that our approach has larger camera relocalization error but better performance on predicting world coordinates of pixels compared to SCoRe Forests.","PeriodicalId":226381,"journal":{"name":"2016 Seventh International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"708 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Predicting world coordinates of pixels in RGB images using Convolutional Neural Network for camera relocalization\",\"authors\":\"Jian Wu, Liwei Ma, Xiaolin Hu\",\"doi\":\"10.1109/ICICIP.2016.7885894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convolutional Neural Networks (CNNs) have achieved great successes in many computer vision tasks and have been applied to pose regression for camera relocalization. Traditional Simultaneously Localization and Mapping (SLAM) approaches use correspondences between camera coordinates and world coordinates to estimate camera pose. In this paper, we present a new camera relocalization method including pixels' world coordinates regression with CNNs and camera pose optimization. We also explore the different characteristics of CNNs and SCoRe Forests on world coordinates regression. Experiments show that our approach has larger camera relocalization error but better performance on predicting world coordinates of pixels compared to SCoRe Forests.\",\"PeriodicalId\":226381,\"journal\":{\"name\":\"2016 Seventh International Conference on Intelligent Control and Information Processing (ICICIP)\",\"volume\":\"708 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Seventh International Conference on Intelligent Control and Information Processing (ICICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICIP.2016.7885894\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Seventh International Conference on Intelligent Control and Information Processing (ICICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP.2016.7885894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

卷积神经网络(cnn)在许多计算机视觉任务中取得了巨大的成功,并已被应用于相机重新定位的姿态回归。传统的同步定位和映射(SLAM)方法使用相机坐标和世界坐标之间的对应关系来估计相机姿态。本文提出了一种基于cnn的像素世界坐标回归和摄像机姿态优化的摄像机重新定位方法。我们还探讨了cnn和SCoRe Forests在世界坐标回归上的不同特征。实验表明,与SCoRe Forests相比,我们的方法具有更大的相机重新定位误差,但在预测像素的世界坐标方面具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting world coordinates of pixels in RGB images using Convolutional Neural Network for camera relocalization
Convolutional Neural Networks (CNNs) have achieved great successes in many computer vision tasks and have been applied to pose regression for camera relocalization. Traditional Simultaneously Localization and Mapping (SLAM) approaches use correspondences between camera coordinates and world coordinates to estimate camera pose. In this paper, we present a new camera relocalization method including pixels' world coordinates regression with CNNs and camera pose optimization. We also explore the different characteristics of CNNs and SCoRe Forests on world coordinates regression. Experiments show that our approach has larger camera relocalization error but better performance on predicting world coordinates of pixels compared to SCoRe Forests.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信