极大极小组合优化的双时间尺度神经动力学方法

Man-Fai Leung, Jun Wang
{"title":"极大极小组合优化的双时间尺度神经动力学方法","authors":"Man-Fai Leung, Jun Wang","doi":"10.1109/ICIST52614.2021.9440640","DOIUrl":null,"url":null,"abstract":"This paper is concerned with asset allocation based on two-timescale neurodynamic optimization. The portfolio optimization in classical mean-variance framework is reformulated as a minimax portfolio selection problem and a two-timescale neurodynamic approach is developed to solve the problem. The neurodynamic approach incorporates a recurrent neural network (RNN) operating on two different timescales. Computational results show the efficacy and performance of the developed approach to asset allocation.","PeriodicalId":371599,"journal":{"name":"2021 11th International Conference on Information Science and Technology (ICIST)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Two-Timescale Neurodynamic Approach to Minimax Portfolio Optimization\",\"authors\":\"Man-Fai Leung, Jun Wang\",\"doi\":\"10.1109/ICIST52614.2021.9440640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is concerned with asset allocation based on two-timescale neurodynamic optimization. The portfolio optimization in classical mean-variance framework is reformulated as a minimax portfolio selection problem and a two-timescale neurodynamic approach is developed to solve the problem. The neurodynamic approach incorporates a recurrent neural network (RNN) operating on two different timescales. Computational results show the efficacy and performance of the developed approach to asset allocation.\",\"PeriodicalId\":371599,\"journal\":{\"name\":\"2021 11th International Conference on Information Science and Technology (ICIST)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 11th International Conference on Information Science and Technology (ICIST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIST52614.2021.9440640\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 11th International Conference on Information Science and Technology (ICIST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIST52614.2021.9440640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了基于双时间尺度神经动力学优化的资产配置问题。将经典均值-方差框架下的投资组合优化问题重新表述为极小极大投资组合选择问题,并提出了一种双时间尺度神经动力学方法来求解该问题。神经动力学方法结合了一个在两个不同时间尺度上运行的递归神经网络(RNN)。计算结果表明了所提出的资产配置方法的有效性和性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Two-Timescale Neurodynamic Approach to Minimax Portfolio Optimization
This paper is concerned with asset allocation based on two-timescale neurodynamic optimization. The portfolio optimization in classical mean-variance framework is reformulated as a minimax portfolio selection problem and a two-timescale neurodynamic approach is developed to solve the problem. The neurodynamic approach incorporates a recurrent neural network (RNN) operating on two different timescales. Computational results show the efficacy and performance of the developed approach to asset allocation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信