最优无损压缩中码字长度累积量生成函数

T. Courtade, S. Verdú
{"title":"最优无损压缩中码字长度累积量生成函数","authors":"T. Courtade, S. Verdú","doi":"10.1109/ISIT.2014.6875283","DOIUrl":null,"url":null,"abstract":"This paper analyzes the distribution of the codeword lengths of the optimal lossless compression code without prefix constraints both in the non-asymptotic regime and in the asymptotic regime. The technique we use is based on upper and lower bounding the cumulant generating function of the optimum codeword lengths. In the context of prefix codes, the normalized version of this quantity was proposed by Campbell in 1965 as a generalized average length. We then use the one-shot bounds to analyze the large deviations (reliability function) and small deviations (normal approximation) of the asymptotic fundamental limit in the case of memoryless sources. In contrast to other approaches based on the method of types or the Berry-Esséen inequality, we are able to deal with sources with infinite alphabets.","PeriodicalId":127191,"journal":{"name":"2014 IEEE International Symposium on Information Theory","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Cumulant generating function of codeword lengths in optimal lossless compression\",\"authors\":\"T. Courtade, S. Verdú\",\"doi\":\"10.1109/ISIT.2014.6875283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper analyzes the distribution of the codeword lengths of the optimal lossless compression code without prefix constraints both in the non-asymptotic regime and in the asymptotic regime. The technique we use is based on upper and lower bounding the cumulant generating function of the optimum codeword lengths. In the context of prefix codes, the normalized version of this quantity was proposed by Campbell in 1965 as a generalized average length. We then use the one-shot bounds to analyze the large deviations (reliability function) and small deviations (normal approximation) of the asymptotic fundamental limit in the case of memoryless sources. In contrast to other approaches based on the method of types or the Berry-Esséen inequality, we are able to deal with sources with infinite alphabets.\",\"PeriodicalId\":127191,\"journal\":{\"name\":\"2014 IEEE International Symposium on Information Theory\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Symposium on Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2014.6875283\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2014.6875283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

摘要

本文分析了无前缀约束的最优无损压缩码在非渐近域和渐近域的码字长度分布。我们使用的技术是基于最优码字长度的累积量生成函数的上下限。在前缀码的背景下,Campbell在1965年提出了这个量的规范化版本作为广义平均长度。然后,我们使用单次边界来分析无记忆源情况下渐近基本极限的大偏差(可靠性函数)和小偏差(正态近似)。与基于类型方法或berry - ess不等式的其他方法相比,我们能够处理具有无限字母的源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cumulant generating function of codeword lengths in optimal lossless compression
This paper analyzes the distribution of the codeword lengths of the optimal lossless compression code without prefix constraints both in the non-asymptotic regime and in the asymptotic regime. The technique we use is based on upper and lower bounding the cumulant generating function of the optimum codeword lengths. In the context of prefix codes, the normalized version of this quantity was proposed by Campbell in 1965 as a generalized average length. We then use the one-shot bounds to analyze the large deviations (reliability function) and small deviations (normal approximation) of the asymptotic fundamental limit in the case of memoryless sources. In contrast to other approaches based on the method of types or the Berry-Esséen inequality, we are able to deal with sources with infinite alphabets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信