一种基于相似度的PMU错误检测技术

Ikponmwosa Idehen, T. Overbye
{"title":"一种基于相似度的PMU错误检测技术","authors":"Ikponmwosa Idehen, T. Overbye","doi":"10.1109/ISAP.2017.8071369","DOIUrl":null,"url":null,"abstract":"This paper presents a two stage error detection technique for a power system time series data. It implements a local similarity method to isolate an anomalous time series data, and further applies a window scanning technique to detect instances of inconsistent data segments. The requirement for few parameter definitions and small computation time makes this technique attractive for data error detection. Validation of the technique is carried out using data obtained from prototyped PMU clock delay and GPS signal loss.","PeriodicalId":257100,"journal":{"name":"2017 19th International Conference on Intelligent System Application to Power Systems (ISAP)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A similarity-based PMU error detection technique\",\"authors\":\"Ikponmwosa Idehen, T. Overbye\",\"doi\":\"10.1109/ISAP.2017.8071369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a two stage error detection technique for a power system time series data. It implements a local similarity method to isolate an anomalous time series data, and further applies a window scanning technique to detect instances of inconsistent data segments. The requirement for few parameter definitions and small computation time makes this technique attractive for data error detection. Validation of the technique is carried out using data obtained from prototyped PMU clock delay and GPS signal loss.\",\"PeriodicalId\":257100,\"journal\":{\"name\":\"2017 19th International Conference on Intelligent System Application to Power Systems (ISAP)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 19th International Conference on Intelligent System Application to Power Systems (ISAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISAP.2017.8071369\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 19th International Conference on Intelligent System Application to Power Systems (ISAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAP.2017.8071369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

提出了一种电力系统时间序列数据的两级误差检测技术。采用局部相似度方法分离异常时间序列数据,并进一步应用窗口扫描技术检测不一致数据段的实例。该技术对参数定义的要求少,计算时间短,因此对数据错误检测很有吸引力。利用原型PMU时钟延迟和GPS信号损失获得的数据对该技术进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A similarity-based PMU error detection technique
This paper presents a two stage error detection technique for a power system time series data. It implements a local similarity method to isolate an anomalous time series data, and further applies a window scanning technique to detect instances of inconsistent data segments. The requirement for few parameter definitions and small computation time makes this technique attractive for data error detection. Validation of the technique is carried out using data obtained from prototyped PMU clock delay and GPS signal loss.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信