{"title":"复杂SLI算法:表示、算法和分析","authors":"P. Turner","doi":"10.1109/ARITH.1993.378113","DOIUrl":null,"url":null,"abstract":"The extension of the SLI (symmetric level index) system to complex numbers and arithmetic is discussed. The natural form for representation of complex quantities in SLI is in the modulus-argument form, and this can be sensibly packed into a single 64-b word for the equivalent of the 32-b real SLI representation. The arithmetic algorithms prove to be very slightly more complicated than for real SLI arithmetic. The representation, the arithmetic algorithms, and the control of errors within these algorithms are described.<<ETX>>","PeriodicalId":414758,"journal":{"name":"Proceedings of IEEE 11th Symposium on Computer Arithmetic","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Complex SLI arithmetic: Representation, algorithms and analysis\",\"authors\":\"P. Turner\",\"doi\":\"10.1109/ARITH.1993.378113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The extension of the SLI (symmetric level index) system to complex numbers and arithmetic is discussed. The natural form for representation of complex quantities in SLI is in the modulus-argument form, and this can be sensibly packed into a single 64-b word for the equivalent of the 32-b real SLI representation. The arithmetic algorithms prove to be very slightly more complicated than for real SLI arithmetic. The representation, the arithmetic algorithms, and the control of errors within these algorithms are described.<<ETX>>\",\"PeriodicalId\":414758,\"journal\":{\"name\":\"Proceedings of IEEE 11th Symposium on Computer Arithmetic\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of IEEE 11th Symposium on Computer Arithmetic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARITH.1993.378113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE 11th Symposium on Computer Arithmetic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARITH.1993.378113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Complex SLI arithmetic: Representation, algorithms and analysis
The extension of the SLI (symmetric level index) system to complex numbers and arithmetic is discussed. The natural form for representation of complex quantities in SLI is in the modulus-argument form, and this can be sensibly packed into a single 64-b word for the equivalent of the 32-b real SLI representation. The arithmetic algorithms prove to be very slightly more complicated than for real SLI arithmetic. The representation, the arithmetic algorithms, and the control of errors within these algorithms are described.<>