CO2水合物在NaCl水溶液中生长的分子动力学模拟

Xianwu Jing, Li Zhou, Youquan Liu, Yingying Xu, Wenjian Yin
{"title":"CO2水合物在NaCl水溶液中生长的分子动力学模拟","authors":"Xianwu Jing, Li Zhou, Youquan Liu, Yingying Xu, Wenjian Yin","doi":"10.2118/214332-pa","DOIUrl":null,"url":null,"abstract":"\n Climate change has brought enormous adverse outcomes to biological activities around the world. The main reason is that too much CO2 has been released into the atmosphere. In recent years, storing CO2 in the form of CO2 hydrate is a research hotspot, the main purpose of which is to reduce carbon emissions to mitigate the greenhouse effect. In this work, we use the molecular dynamics simulation method to study the growth of CO2 hydrate in NaCl aqueous solution with the assumption of induction of CO2 sequestration in the ocean. The temperature is 275 K and the pressure is 10 MPa in this work. Under these conditions, stucture I type (sI-type) CO2 hydrate with a density of about 1150 kg/m3 formed within a very short period of time. The simulation results show that during hydrate growth, Na+ and Cl− are “driven” together and the water molecules remain liquid in this region, where they are near Na+ and Cl−. From the independent gradient model (IGM) based on Hirshfeld partition (IGMH) analysis, Na+ does not bond with any ions/molecules, which hinders the formation of water cages and thus inhibits hydrate growth; Cl− forms multiple H-bonds with neighboring H2O molecules and can participate in the formation of water cages. However, it is worth noting that not all Cl– and the nearby water molecules can form either a five-membered ring or a four-membered ring; even some water molecules and Cl− cannot form a closed ring. Therefore, it is impossible to determine whether the water molecules near the Cl− are all in liquid or solid state.","PeriodicalId":153181,"journal":{"name":"SPE Production & Operations","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular Dynamics Simulation of CO2 Hydrate Growth in NaCl Aqueous Solution\",\"authors\":\"Xianwu Jing, Li Zhou, Youquan Liu, Yingying Xu, Wenjian Yin\",\"doi\":\"10.2118/214332-pa\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Climate change has brought enormous adverse outcomes to biological activities around the world. The main reason is that too much CO2 has been released into the atmosphere. In recent years, storing CO2 in the form of CO2 hydrate is a research hotspot, the main purpose of which is to reduce carbon emissions to mitigate the greenhouse effect. In this work, we use the molecular dynamics simulation method to study the growth of CO2 hydrate in NaCl aqueous solution with the assumption of induction of CO2 sequestration in the ocean. The temperature is 275 K and the pressure is 10 MPa in this work. Under these conditions, stucture I type (sI-type) CO2 hydrate with a density of about 1150 kg/m3 formed within a very short period of time. The simulation results show that during hydrate growth, Na+ and Cl− are “driven” together and the water molecules remain liquid in this region, where they are near Na+ and Cl−. From the independent gradient model (IGM) based on Hirshfeld partition (IGMH) analysis, Na+ does not bond with any ions/molecules, which hinders the formation of water cages and thus inhibits hydrate growth; Cl− forms multiple H-bonds with neighboring H2O molecules and can participate in the formation of water cages. However, it is worth noting that not all Cl– and the nearby water molecules can form either a five-membered ring or a four-membered ring; even some water molecules and Cl− cannot form a closed ring. Therefore, it is impossible to determine whether the water molecules near the Cl− are all in liquid or solid state.\",\"PeriodicalId\":153181,\"journal\":{\"name\":\"SPE Production & Operations\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPE Production & Operations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/214332-pa\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPE Production & Operations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/214332-pa","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

气候变化给世界各地的生物活动带来了巨大的不利后果。主要原因是太多的二氧化碳被释放到大气中。以二氧化碳水合物的形式储存二氧化碳是近年来的研究热点,其主要目的是减少碳排放,缓解温室效应。本文采用分子动力学模拟方法,在诱导CO2在海洋中固存的假设下,对NaCl水溶液中CO2水合物的生长进行了研究。本工作温度为275 K,压力为10 MPa。在这些条件下,在很短的时间内形成了密度约为1150kg /m3的I型(si型)结构CO2水合物。模拟结果表明,在水合物生长过程中,Na+和Cl−被“驱动”在一起,水分子在靠近Na+和Cl−的区域保持液态。从基于Hirshfeld划分(IGMH)分析的独立梯度模型(IGM)来看,Na+不与任何离子/分子结合,阻碍了水笼的形成,从而抑制了水合物的生长;Cl−与相邻的H2O分子形成多个氢键,并参与水笼的形成。然而,值得注意的是,并非所有的Cl -和附近的水分子都能形成五元环或四元环;甚至一些水分子和氯离子也不能形成闭合环。因此,不可能确定Cl−附近的水分子是否都处于液态或固态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Molecular Dynamics Simulation of CO2 Hydrate Growth in NaCl Aqueous Solution
Climate change has brought enormous adverse outcomes to biological activities around the world. The main reason is that too much CO2 has been released into the atmosphere. In recent years, storing CO2 in the form of CO2 hydrate is a research hotspot, the main purpose of which is to reduce carbon emissions to mitigate the greenhouse effect. In this work, we use the molecular dynamics simulation method to study the growth of CO2 hydrate in NaCl aqueous solution with the assumption of induction of CO2 sequestration in the ocean. The temperature is 275 K and the pressure is 10 MPa in this work. Under these conditions, stucture I type (sI-type) CO2 hydrate with a density of about 1150 kg/m3 formed within a very short period of time. The simulation results show that during hydrate growth, Na+ and Cl− are “driven” together and the water molecules remain liquid in this region, where they are near Na+ and Cl−. From the independent gradient model (IGM) based on Hirshfeld partition (IGMH) analysis, Na+ does not bond with any ions/molecules, which hinders the formation of water cages and thus inhibits hydrate growth; Cl− forms multiple H-bonds with neighboring H2O molecules and can participate in the formation of water cages. However, it is worth noting that not all Cl– and the nearby water molecules can form either a five-membered ring or a four-membered ring; even some water molecules and Cl− cannot form a closed ring. Therefore, it is impossible to determine whether the water molecules near the Cl− are all in liquid or solid state.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信