Surender Reddy Yerva, Michele Catasta, Gianluca Demartini, K. Aberer
{"title":"利用用户社交资料的推文实体消歧","authors":"Surender Reddy Yerva, Michele Catasta, Gianluca Demartini, K. Aberer","doi":"10.1109/IRI.2013.6642462","DOIUrl":null,"url":null,"abstract":"Pervasive web and social networks are becoming part of everyone's life. Users through their activities on these networks are leaving traces of their expertise, interests and personalities. With the advances in Web mining and user modeling techniques it is possible to leverage the user social network activity history to extract the semantics of user-generated content. In this work we explore various techniques for constructing user profiles based on the content they publish on social networks. We further show that one of the advantages of maintaining social network user profiles is to provide the context for better understanding of microposts. We propose and experimentally evaluate different approaches for entity disambiguation in social networks based on syntactic and semantic features on top of two different social networks: a general-interest network (i.e., Twitter) and a domain-specific network (i.e., StackOverflow). We demonstrate how disambiguation accuracy increases when considering enriched user profiles integrating content from both social networks.","PeriodicalId":418492,"journal":{"name":"2013 IEEE 14th International Conference on Information Reuse & Integration (IRI)","volume":"168 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Entity disambiguation in tweets leveraging user social profiles\",\"authors\":\"Surender Reddy Yerva, Michele Catasta, Gianluca Demartini, K. Aberer\",\"doi\":\"10.1109/IRI.2013.6642462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pervasive web and social networks are becoming part of everyone's life. Users through their activities on these networks are leaving traces of their expertise, interests and personalities. With the advances in Web mining and user modeling techniques it is possible to leverage the user social network activity history to extract the semantics of user-generated content. In this work we explore various techniques for constructing user profiles based on the content they publish on social networks. We further show that one of the advantages of maintaining social network user profiles is to provide the context for better understanding of microposts. We propose and experimentally evaluate different approaches for entity disambiguation in social networks based on syntactic and semantic features on top of two different social networks: a general-interest network (i.e., Twitter) and a domain-specific network (i.e., StackOverflow). We demonstrate how disambiguation accuracy increases when considering enriched user profiles integrating content from both social networks.\",\"PeriodicalId\":418492,\"journal\":{\"name\":\"2013 IEEE 14th International Conference on Information Reuse & Integration (IRI)\",\"volume\":\"168 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 14th International Conference on Information Reuse & Integration (IRI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRI.2013.6642462\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 14th International Conference on Information Reuse & Integration (IRI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI.2013.6642462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Entity disambiguation in tweets leveraging user social profiles
Pervasive web and social networks are becoming part of everyone's life. Users through their activities on these networks are leaving traces of their expertise, interests and personalities. With the advances in Web mining and user modeling techniques it is possible to leverage the user social network activity history to extract the semantics of user-generated content. In this work we explore various techniques for constructing user profiles based on the content they publish on social networks. We further show that one of the advantages of maintaining social network user profiles is to provide the context for better understanding of microposts. We propose and experimentally evaluate different approaches for entity disambiguation in social networks based on syntactic and semantic features on top of two different social networks: a general-interest network (i.e., Twitter) and a domain-specific network (i.e., StackOverflow). We demonstrate how disambiguation accuracy increases when considering enriched user profiles integrating content from both social networks.