在说话人特征化中有效利用重叠信息

Scott Otterson, Mari Ostendorf
{"title":"在说话人特征化中有效利用重叠信息","authors":"Scott Otterson, Mari Ostendorf","doi":"10.1109/ASRU.2007.4430194","DOIUrl":null,"url":null,"abstract":"Speaker overlap in meetings is thought to be a significant contributor to error in speaker diarization, but it is not clear if overlaps are problematic for speaker clustering and/or if errors could be addressed by assigning multiple labels in overlap regions. In this paper, we look at these issues experimentally, assuming perfect detection of overlaps, to assess the relative importance of these problems and the potential impact of overlap detection. With our best features, we find that detecting overlaps could potentially improve diarization accuracy by 15% relative, using a simple strategy of assigning speaker labels in overlap regions according to the labels of the neighboring segments. In addition, the use of cross-correlation features with MFCC's reduces the performance gap due to overlaps, so that there is little gain from removing overlapped regions before clustering.","PeriodicalId":371729,"journal":{"name":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":"{\"title\":\"Efficient use of overlap information in speaker diarization\",\"authors\":\"Scott Otterson, Mari Ostendorf\",\"doi\":\"10.1109/ASRU.2007.4430194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Speaker overlap in meetings is thought to be a significant contributor to error in speaker diarization, but it is not clear if overlaps are problematic for speaker clustering and/or if errors could be addressed by assigning multiple labels in overlap regions. In this paper, we look at these issues experimentally, assuming perfect detection of overlaps, to assess the relative importance of these problems and the potential impact of overlap detection. With our best features, we find that detecting overlaps could potentially improve diarization accuracy by 15% relative, using a simple strategy of assigning speaker labels in overlap regions according to the labels of the neighboring segments. In addition, the use of cross-correlation features with MFCC's reduces the performance gap due to overlaps, so that there is little gain from removing overlapped regions before clustering.\",\"PeriodicalId\":371729,\"journal\":{\"name\":\"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU.2007.4430194\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2007.4430194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

摘要

会议上的演讲者重叠被认为是导致演讲者分类错误的一个重要因素,但目前尚不清楚重叠是否会影响演讲者的聚类,或者是否可以通过在重叠区域分配多个标签来解决错误。在本文中,我们通过实验研究这些问题,假设可以完美地检测到重叠,以评估这些问题的相对重要性以及重叠检测的潜在影响。利用我们的最佳特征,我们发现,使用一种简单的策略,即根据相邻片段的标签在重叠区域分配说话人标签,检测重叠可能会相对提高15%的拨号精度。此外,互相关特征与MFCC的使用减少了由于重叠造成的性能差距,因此在聚类之前去除重叠区域几乎没有增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient use of overlap information in speaker diarization
Speaker overlap in meetings is thought to be a significant contributor to error in speaker diarization, but it is not clear if overlaps are problematic for speaker clustering and/or if errors could be addressed by assigning multiple labels in overlap regions. In this paper, we look at these issues experimentally, assuming perfect detection of overlaps, to assess the relative importance of these problems and the potential impact of overlap detection. With our best features, we find that detecting overlaps could potentially improve diarization accuracy by 15% relative, using a simple strategy of assigning speaker labels in overlap regions according to the labels of the neighboring segments. In addition, the use of cross-correlation features with MFCC's reduces the performance gap due to overlaps, so that there is little gain from removing overlapped regions before clustering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信