静态非线性动力系统的遗传辨识

M. Dotoli, G. Maione, D. Naso, B. Turchiano
{"title":"静态非线性动力系统的遗传辨识","authors":"M. Dotoli, G. Maione, D. Naso, B. Turchiano","doi":"10.1109/SMCIA.2001.936730","DOIUrl":null,"url":null,"abstract":"This paper describes the application of genetic algorithms (GA) to identify a class of nonlinear SISO models composed of a memoryless nonlinearity in series with a linear transfer function. In contrast with recent literature on the considered problem, we encode in the chromosomes also the structure of the model (type of nonlinearity, number of zeros and poles), and use the GA to identify both the optimal structure and the associated parameters. New operators for mutation and crossover to deal with chromosomes with variable length are introduced. The effectiveness of the approach is tested on a set of case studies derived from literature.","PeriodicalId":104202,"journal":{"name":"SMCia/01. Proceedings of the 2001 IEEE Mountain Workshop on Soft Computing in Industrial Applications (Cat. No.01EX504)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Genetic identification of dynamical systems with static nonlinearities\",\"authors\":\"M. Dotoli, G. Maione, D. Naso, B. Turchiano\",\"doi\":\"10.1109/SMCIA.2001.936730\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the application of genetic algorithms (GA) to identify a class of nonlinear SISO models composed of a memoryless nonlinearity in series with a linear transfer function. In contrast with recent literature on the considered problem, we encode in the chromosomes also the structure of the model (type of nonlinearity, number of zeros and poles), and use the GA to identify both the optimal structure and the associated parameters. New operators for mutation and crossover to deal with chromosomes with variable length are introduced. The effectiveness of the approach is tested on a set of case studies derived from literature.\",\"PeriodicalId\":104202,\"journal\":{\"name\":\"SMCia/01. Proceedings of the 2001 IEEE Mountain Workshop on Soft Computing in Industrial Applications (Cat. No.01EX504)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SMCia/01. Proceedings of the 2001 IEEE Mountain Workshop on Soft Computing in Industrial Applications (Cat. No.01EX504)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMCIA.2001.936730\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SMCia/01. Proceedings of the 2001 IEEE Mountain Workshop on Soft Computing in Industrial Applications (Cat. No.01EX504)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMCIA.2001.936730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

本文应用遗传算法(GA)辨识一类由无记忆非线性序列和线性传递函数组成的非线性SISO模型。与最近关于所考虑问题的文献相比,我们在染色体中也编码了模型的结构(非线性类型,零和极点的数量),并使用遗传算法来识别最优结构和相关参数。为处理变长染色体,引入了新的变异和交叉算子。该方法的有效性在一组来自文献的案例研究中得到检验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genetic identification of dynamical systems with static nonlinearities
This paper describes the application of genetic algorithms (GA) to identify a class of nonlinear SISO models composed of a memoryless nonlinearity in series with a linear transfer function. In contrast with recent literature on the considered problem, we encode in the chromosomes also the structure of the model (type of nonlinearity, number of zeros and poles), and use the GA to identify both the optimal structure and the associated parameters. New operators for mutation and crossover to deal with chromosomes with variable length are introduced. The effectiveness of the approach is tested on a set of case studies derived from literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信