提出了生化领域中条件随机场的检测与分类方法

Asif Ekbal, S. Saha, K. Ravi
{"title":"提出了生化领域中条件随机场的检测与分类方法","authors":"Asif Ekbal, S. Saha, K. Ravi","doi":"10.1109/EAIT.2012.6407943","DOIUrl":null,"url":null,"abstract":"Finding mentions of chemical names in texts is of huge interest due to its importance in wide-spread application areas. The inherent complex structures of chemical names and the existence of several representations and nomenclatures (like SMILES, InChI, IUPAC) pose a big challenge to their automatic identification and classification. In this paper we present a supervised machine learning approach based on Conditional Random Fields (CRF) to find mentions of IUPAC and IUPAC-like names in scientific text. We identify and implement a very rich feature set for the task without using any domain specific knowledge and/or resources. Experiments are carried out on the benchmark MEDLINE datasets. Evaluation shows encouraging performance with the overall recall, precision and F-measure values of 90.96%, 91.52% and 91.23%, respectively. We also present the scope of comparison to the existing state-of-the-art system(s).","PeriodicalId":194103,"journal":{"name":"2012 Third International Conference on Emerging Applications of Information Technology","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mention detection and classification in bio-chemical domain using Conditional Random Field\",\"authors\":\"Asif Ekbal, S. Saha, K. Ravi\",\"doi\":\"10.1109/EAIT.2012.6407943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Finding mentions of chemical names in texts is of huge interest due to its importance in wide-spread application areas. The inherent complex structures of chemical names and the existence of several representations and nomenclatures (like SMILES, InChI, IUPAC) pose a big challenge to their automatic identification and classification. In this paper we present a supervised machine learning approach based on Conditional Random Fields (CRF) to find mentions of IUPAC and IUPAC-like names in scientific text. We identify and implement a very rich feature set for the task without using any domain specific knowledge and/or resources. Experiments are carried out on the benchmark MEDLINE datasets. Evaluation shows encouraging performance with the overall recall, precision and F-measure values of 90.96%, 91.52% and 91.23%, respectively. We also present the scope of comparison to the existing state-of-the-art system(s).\",\"PeriodicalId\":194103,\"journal\":{\"name\":\"2012 Third International Conference on Emerging Applications of Information Technology\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Third International Conference on Emerging Applications of Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EAIT.2012.6407943\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Third International Conference on Emerging Applications of Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EAIT.2012.6407943","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

由于化学名称在广泛的应用领域中具有重要意义,因此在文本中查找化学名称引起了人们的极大兴趣。化学名称固有的复杂结构和多种表示和命名法(如SMILES、InChI、IUPAC)的存在,给化学名称的自动识别和分类带来了很大的挑战。在本文中,我们提出了一种基于条件随机场(CRF)的监督机器学习方法来查找科学文本中提到的IUPAC和类似IUPAC的名称。我们在不使用任何领域特定知识和/或资源的情况下,为任务识别和实现非常丰富的功能集。在MEDLINE基准数据集上进行了实验。总体召回率、精度和f测量值分别为90.96%、91.52%和91.23%,评价结果令人鼓舞。我们还提出了与现有最先进系统的比较范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mention detection and classification in bio-chemical domain using Conditional Random Field
Finding mentions of chemical names in texts is of huge interest due to its importance in wide-spread application areas. The inherent complex structures of chemical names and the existence of several representations and nomenclatures (like SMILES, InChI, IUPAC) pose a big challenge to their automatic identification and classification. In this paper we present a supervised machine learning approach based on Conditional Random Fields (CRF) to find mentions of IUPAC and IUPAC-like names in scientific text. We identify and implement a very rich feature set for the task without using any domain specific knowledge and/or resources. Experiments are carried out on the benchmark MEDLINE datasets. Evaluation shows encouraging performance with the overall recall, precision and F-measure values of 90.96%, 91.52% and 91.23%, respectively. We also present the scope of comparison to the existing state-of-the-art system(s).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信