基于卷积神经网络的随机退化声纳图像模拟器水下目标检测

Minsung Sung, Meungsuk Lee, Jason Kim, Seokyong Song, Young-woon Song, Son-cheol Yu
{"title":"基于卷积神经网络的随机退化声纳图像模拟器水下目标检测","authors":"Minsung Sung, Meungsuk Lee, Jason Kim, Seokyong Song, Young-woon Song, Son-cheol Yu","doi":"10.23919/OCEANS40490.2019.8962403","DOIUrl":null,"url":null,"abstract":"This paper proposes a method to detect underwater objects using sonar image simulator and convolutional neural network (CNN). Instead of simulating very realistic sonar images which is computationally complex, we implemented a simple sonar simulator that calculates only semantic information. Then, we generated training images of target objects by adding randomized degradation effects to the simulated images. The CNN trained with these generated images is robust to the degradation effects inherent in sonar images and thus can detect target objects in real sonar images. We verified the proposed method using the sonar images captured at sea through field experiments. The proposed method can implement object detection more easily because it only uses simulated images instead of real sonar images which are challenging to acquire. The proposed method can also be applied to other sonar-image-based algorithms.","PeriodicalId":208102,"journal":{"name":"OCEANS 2019 MTS/IEEE SEATTLE","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Convolutional-Neural-Network-based Underwater Object Detection Using Sonar Image Simulator with Randomized Degradation\",\"authors\":\"Minsung Sung, Meungsuk Lee, Jason Kim, Seokyong Song, Young-woon Song, Son-cheol Yu\",\"doi\":\"10.23919/OCEANS40490.2019.8962403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a method to detect underwater objects using sonar image simulator and convolutional neural network (CNN). Instead of simulating very realistic sonar images which is computationally complex, we implemented a simple sonar simulator that calculates only semantic information. Then, we generated training images of target objects by adding randomized degradation effects to the simulated images. The CNN trained with these generated images is robust to the degradation effects inherent in sonar images and thus can detect target objects in real sonar images. We verified the proposed method using the sonar images captured at sea through field experiments. The proposed method can implement object detection more easily because it only uses simulated images instead of real sonar images which are challenging to acquire. The proposed method can also be applied to other sonar-image-based algorithms.\",\"PeriodicalId\":208102,\"journal\":{\"name\":\"OCEANS 2019 MTS/IEEE SEATTLE\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"OCEANS 2019 MTS/IEEE SEATTLE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/OCEANS40490.2019.8962403\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"OCEANS 2019 MTS/IEEE SEATTLE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/OCEANS40490.2019.8962403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种基于声纳图像模拟器和卷积神经网络(CNN)的水下目标检测方法。代替模拟非常真实的声纳图像的复杂计算,我们实现了一个简单的声纳模拟器,只计算语义信息。然后,在模拟图像中加入随机退化效应,生成目标物体的训练图像。用这些生成的图像训练的CNN对声纳图像固有的退化效应具有鲁棒性,可以检测到真实声纳图像中的目标物体。利用海上捕获的声纳图像,通过现场实验验证了该方法的有效性。该方法利用模拟图像代替难以获取的真实声纳图像,更容易实现目标检测。该方法同样适用于其他基于声纳图像的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convolutional-Neural-Network-based Underwater Object Detection Using Sonar Image Simulator with Randomized Degradation
This paper proposes a method to detect underwater objects using sonar image simulator and convolutional neural network (CNN). Instead of simulating very realistic sonar images which is computationally complex, we implemented a simple sonar simulator that calculates only semantic information. Then, we generated training images of target objects by adding randomized degradation effects to the simulated images. The CNN trained with these generated images is robust to the degradation effects inherent in sonar images and thus can detect target objects in real sonar images. We verified the proposed method using the sonar images captured at sea through field experiments. The proposed method can implement object detection more easily because it only uses simulated images instead of real sonar images which are challenging to acquire. The proposed method can also be applied to other sonar-image-based algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信