{"title":"Namita Sarawagi, Gene Cooperman,和253","authors":"L. Finkelstein","doi":"10.1090/dimacs/011/17","DOIUrl":null,"url":null,"abstract":"This paper considers a permutation group G = 〈S〉 of degree n with t orbits such that the action on each orbit is primitive. It presents a O(tn2 logc(n)) time Monte Carlo group membership algorithm for some constant c. The algorithm is notable for its use of a new theorem showing how to find O(t log n) generators in O (̃|S|n) time under a more general form of the above hypotheses. The algorithm relies on new combinatorial methods for computing with groups [CF92] and previous work of Babai, Luks and Seress [BLS88]. In addition, it makes extensive use of a structure theorem for primitive groups by Cameron [Cam81], which can be derived from results of Kantor [Kan79] and the classification of finite simple groups.","PeriodicalId":342609,"journal":{"name":"Groups And Computation","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Group Membership for Groups with Primitive Orbits Namita Sarawagi, Gene Cooperman, and 253\",\"authors\":\"L. Finkelstein\",\"doi\":\"10.1090/dimacs/011/17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers a permutation group G = 〈S〉 of degree n with t orbits such that the action on each orbit is primitive. It presents a O(tn2 logc(n)) time Monte Carlo group membership algorithm for some constant c. The algorithm is notable for its use of a new theorem showing how to find O(t log n) generators in O (̃|S|n) time under a more general form of the above hypotheses. The algorithm relies on new combinatorial methods for computing with groups [CF92] and previous work of Babai, Luks and Seress [BLS88]. In addition, it makes extensive use of a structure theorem for primitive groups by Cameron [Cam81], which can be derived from results of Kantor [Kan79] and the classification of finite simple groups.\",\"PeriodicalId\":342609,\"journal\":{\"name\":\"Groups And Computation\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Groups And Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/dimacs/011/17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groups And Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/dimacs/011/17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Group Membership for Groups with Primitive Orbits Namita Sarawagi, Gene Cooperman, and 253
This paper considers a permutation group G = 〈S〉 of degree n with t orbits such that the action on each orbit is primitive. It presents a O(tn2 logc(n)) time Monte Carlo group membership algorithm for some constant c. The algorithm is notable for its use of a new theorem showing how to find O(t log n) generators in O (̃|S|n) time under a more general form of the above hypotheses. The algorithm relies on new combinatorial methods for computing with groups [CF92] and previous work of Babai, Luks and Seress [BLS88]. In addition, it makes extensive use of a structure theorem for primitive groups by Cameron [Cam81], which can be derived from results of Kantor [Kan79] and the classification of finite simple groups.