多窗口双谱估计

Huixia He, D. Thomson
{"title":"多窗口双谱估计","authors":"Huixia He, D. Thomson","doi":"10.1109/SAM.2006.1706179","DOIUrl":null,"url":null,"abstract":"By taking the third-order statistical information of processes into account, the bispectrum is a useful tool in digital signal processing and statistics. The paper proposes a nonparametric approach of estimating the bispectrum, using tapers designed to achieve maximal bifrequency concentration. Bispectra are functions of two frequencies plus their sum, so the optimum tapers are not products of Slepian sequences. The new tapers minimize the sixth-moment \"energy\" leakage in the estimate, and thus the new multiple window bispectrum estimator (MWBE) can be interpreted as minimizing the broad-band bias. Alternatively, the MWBE can be viewed as a solution of an integral inverse problem using an eigenfunction expansion. This approach can be extended to estimate higher-order polyspectra. Numerical simulations use moving average (MA) data with non-Gaussian white driving noise. Simulation results with small sample sizes show that this new MWBE is feasible and mean-squared error (MSE) optimal","PeriodicalId":272327,"journal":{"name":"Fourth IEEE Workshop on Sensor Array and Multichannel Processing, 2006.","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multiple Window Bispectrum Estimator\",\"authors\":\"Huixia He, D. Thomson\",\"doi\":\"10.1109/SAM.2006.1706179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By taking the third-order statistical information of processes into account, the bispectrum is a useful tool in digital signal processing and statistics. The paper proposes a nonparametric approach of estimating the bispectrum, using tapers designed to achieve maximal bifrequency concentration. Bispectra are functions of two frequencies plus their sum, so the optimum tapers are not products of Slepian sequences. The new tapers minimize the sixth-moment \\\"energy\\\" leakage in the estimate, and thus the new multiple window bispectrum estimator (MWBE) can be interpreted as minimizing the broad-band bias. Alternatively, the MWBE can be viewed as a solution of an integral inverse problem using an eigenfunction expansion. This approach can be extended to estimate higher-order polyspectra. Numerical simulations use moving average (MA) data with non-Gaussian white driving noise. Simulation results with small sample sizes show that this new MWBE is feasible and mean-squared error (MSE) optimal\",\"PeriodicalId\":272327,\"journal\":{\"name\":\"Fourth IEEE Workshop on Sensor Array and Multichannel Processing, 2006.\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fourth IEEE Workshop on Sensor Array and Multichannel Processing, 2006.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAM.2006.1706179\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth IEEE Workshop on Sensor Array and Multichannel Processing, 2006.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2006.1706179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

由于考虑了过程的三阶统计信息,双谱在数字信号处理和统计中是一个有用的工具。本文提出了一种估计双谱的非参数方法,该方法使用设计用于实现最大双频集中的圆锥。双谱是两个频率加上它们的和的函数,所以最优锥度不是Slepian序列的产物。新的锥最小化了估计中的第六矩“能量”泄漏,因此新的多窗口双谱估计器(MWBE)可以解释为最小化宽带偏置。或者,MWBE可以被看作是使用特征函数展开的积分逆问题的解。这种方法可以推广到估计高阶多光谱。数值模拟采用带有非高斯白噪声的移动平均数据。小样本的仿真结果表明,该方法是可行的,均方误差(MSE)是最优的
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiple Window Bispectrum Estimator
By taking the third-order statistical information of processes into account, the bispectrum is a useful tool in digital signal processing and statistics. The paper proposes a nonparametric approach of estimating the bispectrum, using tapers designed to achieve maximal bifrequency concentration. Bispectra are functions of two frequencies plus their sum, so the optimum tapers are not products of Slepian sequences. The new tapers minimize the sixth-moment "energy" leakage in the estimate, and thus the new multiple window bispectrum estimator (MWBE) can be interpreted as minimizing the broad-band bias. Alternatively, the MWBE can be viewed as a solution of an integral inverse problem using an eigenfunction expansion. This approach can be extended to estimate higher-order polyspectra. Numerical simulations use moving average (MA) data with non-Gaussian white driving noise. Simulation results with small sample sizes show that this new MWBE is feasible and mean-squared error (MSE) optimal
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信