用理想基和消元理论求解代数方程组

M. Pohst, D. Yun
{"title":"用理想基和消元理论求解代数方程组","authors":"M. Pohst, D. Yun","doi":"10.1145/800206.806397","DOIUrl":null,"url":null,"abstract":"The determination of solutions of a system of algebraic equations is still a problem for which an efficient solution does not exist. In the last few years several authors have suggested new or refined methods, but none of them seems to be satisfactory. In this paper we are mainly concerned with exploring the use of Buchberger's algorithm for finding Groebner ideal bases [2] and combine/compare it with the more familiar methods of polynomial remainder sequences (pseudo-division) and of variable elimination (resultants) [4].","PeriodicalId":314618,"journal":{"name":"Symposium on Symbolic and Algebraic Manipulation","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1981-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"On solving systems of algebraic equations via ideal bases and elimination theory\",\"authors\":\"M. Pohst, D. Yun\",\"doi\":\"10.1145/800206.806397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The determination of solutions of a system of algebraic equations is still a problem for which an efficient solution does not exist. In the last few years several authors have suggested new or refined methods, but none of them seems to be satisfactory. In this paper we are mainly concerned with exploring the use of Buchberger's algorithm for finding Groebner ideal bases [2] and combine/compare it with the more familiar methods of polynomial remainder sequences (pseudo-division) and of variable elimination (resultants) [4].\",\"PeriodicalId\":314618,\"journal\":{\"name\":\"Symposium on Symbolic and Algebraic Manipulation\",\"volume\":\"112 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1981-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symposium on Symbolic and Algebraic Manipulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/800206.806397\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium on Symbolic and Algebraic Manipulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/800206.806397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

代数方程组解的确定仍然是一个不存在有效解的问题。在过去的几年里,几位作者提出了新的或改进的方法,但似乎没有一个令人满意。在本文中,我们主要关注探索使用Buchberger算法寻找Groebner理想基[2],并将其与更熟悉的多项式剩余序列(伪除法)和变量消去(结果)方法[4]结合/比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On solving systems of algebraic equations via ideal bases and elimination theory
The determination of solutions of a system of algebraic equations is still a problem for which an efficient solution does not exist. In the last few years several authors have suggested new or refined methods, but none of them seems to be satisfactory. In this paper we are mainly concerned with exploring the use of Buchberger's algorithm for finding Groebner ideal bases [2] and combine/compare it with the more familiar methods of polynomial remainder sequences (pseudo-division) and of variable elimination (resultants) [4].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信