{"title":"用理想基和消元理论求解代数方程组","authors":"M. Pohst, D. Yun","doi":"10.1145/800206.806397","DOIUrl":null,"url":null,"abstract":"The determination of solutions of a system of algebraic equations is still a problem for which an efficient solution does not exist. In the last few years several authors have suggested new or refined methods, but none of them seems to be satisfactory. In this paper we are mainly concerned with exploring the use of Buchberger's algorithm for finding Groebner ideal bases [2] and combine/compare it with the more familiar methods of polynomial remainder sequences (pseudo-division) and of variable elimination (resultants) [4].","PeriodicalId":314618,"journal":{"name":"Symposium on Symbolic and Algebraic Manipulation","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1981-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"On solving systems of algebraic equations via ideal bases and elimination theory\",\"authors\":\"M. Pohst, D. Yun\",\"doi\":\"10.1145/800206.806397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The determination of solutions of a system of algebraic equations is still a problem for which an efficient solution does not exist. In the last few years several authors have suggested new or refined methods, but none of them seems to be satisfactory. In this paper we are mainly concerned with exploring the use of Buchberger's algorithm for finding Groebner ideal bases [2] and combine/compare it with the more familiar methods of polynomial remainder sequences (pseudo-division) and of variable elimination (resultants) [4].\",\"PeriodicalId\":314618,\"journal\":{\"name\":\"Symposium on Symbolic and Algebraic Manipulation\",\"volume\":\"112 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1981-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symposium on Symbolic and Algebraic Manipulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/800206.806397\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium on Symbolic and Algebraic Manipulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/800206.806397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On solving systems of algebraic equations via ideal bases and elimination theory
The determination of solutions of a system of algebraic equations is still a problem for which an efficient solution does not exist. In the last few years several authors have suggested new or refined methods, but none of them seems to be satisfactory. In this paper we are mainly concerned with exploring the use of Buchberger's algorithm for finding Groebner ideal bases [2] and combine/compare it with the more familiar methods of polynomial remainder sequences (pseudo-division) and of variable elimination (resultants) [4].