海冰SAR图像分类的独立分量分析

J. Karvonen, M. Simila
{"title":"海冰SAR图像分类的独立分量分析","authors":"J. Karvonen, M. Simila","doi":"10.1109/IGARSS.2001.976810","DOIUrl":null,"url":null,"abstract":"Independent component analysis (ICA) is used to compute sets of basis vectors for image data, i.e. for small randomly selected image windows. From these basis vectors a smaller set is selected to be used in classifying sea ice SAR images. A SAR image window is classified based on its projection to the selected basis vectors.","PeriodicalId":135740,"journal":{"name":"IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Independent component analysis for sea ice SAR image classification\",\"authors\":\"J. Karvonen, M. Simila\",\"doi\":\"10.1109/IGARSS.2001.976810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Independent component analysis (ICA) is used to compute sets of basis vectors for image data, i.e. for small randomly selected image windows. From these basis vectors a smaller set is selected to be used in classifying sea ice SAR images. A SAR image window is classified based on its projection to the selected basis vectors.\",\"PeriodicalId\":135740,\"journal\":{\"name\":\"IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217)\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS.2001.976810\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2001.976810","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

独立分量分析(ICA)用于计算图像数据的基向量集,即随机选择的小图像窗口。从这些基向量中选择一个较小的基向量集用于海冰SAR图像的分类。SAR图像窗口的分类是基于其在选定基向量上的投影。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Independent component analysis for sea ice SAR image classification
Independent component analysis (ICA) is used to compute sets of basis vectors for image data, i.e. for small randomly selected image windows. From these basis vectors a smaller set is selected to be used in classifying sea ice SAR images. A SAR image window is classified based on its projection to the selected basis vectors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信