N. Vasilakis, Achilles Benetopoulos, Shivam Handa, Alizee Schoen, Jiasi Shen, M. Rinard
{"title":"基于主动学习和再生的供应链脆弱性消除","authors":"N. Vasilakis, Achilles Benetopoulos, Shivam Handa, Alizee Schoen, Jiasi Shen, M. Rinard","doi":"10.1145/3460120.3484736","DOIUrl":null,"url":null,"abstract":"Software supply-chain attacks target components that are integrated into client applications. Such attacks often target widely-used components, with the attack taking place via operations (for example, file system or network accesses) that do not affect those aspects of component behavior that the client observes. We propose new active library learning and regeneration (ALR) techniques for inferring and regenerating the client-observable behavior of software components. Using increasingly sophisticated rounds of exploration, ALR generates inputs, provides these inputs to the component, and observes the resulting outputs to infer a model of the component's behavior as a program in a domain-specific language. We present Harp, an ALR system for string processing components. We apply Harp to successfully infer and regenerate string-processing components written in JavaScript and C/C++. Our results indicate that, in the majority of cases, Harp completes the regeneration in less than a minute, remains fully compatible with the original library, and delivers performance indistinguishable from the original library. We also demonstrate that Harp can eliminate vulnerabilities associated with libraries targeted in several highly visible security incidents, specifically event-stream, left-pad, and string-compare.","PeriodicalId":135883,"journal":{"name":"Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Supply-Chain Vulnerability Elimination via Active Learning and Regeneration\",\"authors\":\"N. Vasilakis, Achilles Benetopoulos, Shivam Handa, Alizee Schoen, Jiasi Shen, M. Rinard\",\"doi\":\"10.1145/3460120.3484736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Software supply-chain attacks target components that are integrated into client applications. Such attacks often target widely-used components, with the attack taking place via operations (for example, file system or network accesses) that do not affect those aspects of component behavior that the client observes. We propose new active library learning and regeneration (ALR) techniques for inferring and regenerating the client-observable behavior of software components. Using increasingly sophisticated rounds of exploration, ALR generates inputs, provides these inputs to the component, and observes the resulting outputs to infer a model of the component's behavior as a program in a domain-specific language. We present Harp, an ALR system for string processing components. We apply Harp to successfully infer and regenerate string-processing components written in JavaScript and C/C++. Our results indicate that, in the majority of cases, Harp completes the regeneration in less than a minute, remains fully compatible with the original library, and delivers performance indistinguishable from the original library. We also demonstrate that Harp can eliminate vulnerabilities associated with libraries targeted in several highly visible security incidents, specifically event-stream, left-pad, and string-compare.\",\"PeriodicalId\":135883,\"journal\":{\"name\":\"Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3460120.3484736\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3460120.3484736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Supply-Chain Vulnerability Elimination via Active Learning and Regeneration
Software supply-chain attacks target components that are integrated into client applications. Such attacks often target widely-used components, with the attack taking place via operations (for example, file system or network accesses) that do not affect those aspects of component behavior that the client observes. We propose new active library learning and regeneration (ALR) techniques for inferring and regenerating the client-observable behavior of software components. Using increasingly sophisticated rounds of exploration, ALR generates inputs, provides these inputs to the component, and observes the resulting outputs to infer a model of the component's behavior as a program in a domain-specific language. We present Harp, an ALR system for string processing components. We apply Harp to successfully infer and regenerate string-processing components written in JavaScript and C/C++. Our results indicate that, in the majority of cases, Harp completes the regeneration in less than a minute, remains fully compatible with the original library, and delivers performance indistinguishable from the original library. We also demonstrate that Harp can eliminate vulnerabilities associated with libraries targeted in several highly visible security incidents, specifically event-stream, left-pad, and string-compare.