基于smt的有界时间Petri网可达性检测

Agata Pólrola, P. Cybula, Artur Meski
{"title":"基于smt的有界时间Petri网可达性检测","authors":"Agata Pólrola, P. Cybula, Artur Meski","doi":"10.3233/FI-2014-1135","DOIUrl":null,"url":null,"abstract":"Time Petri nets by Merlin and Farber are a powerful modelling formalism. However, symbolic model checking methods for them consider in most cases the nets which are 1-safe, i.e., allow the places to contain at most one token. In our paper we present an approach which applies symbolic verification to testing reachability for time Petri nets without this restriction. We deal with the class of bounded nets restricted to disallow multiple enabledness of transitions, and present the method of reachability testing based on a translation into a satisfiability modulo theory (SMT).","PeriodicalId":286395,"journal":{"name":"International Workshop on Concurrency, Specification and Programming","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"SMT-Based Reachability Checking for Bounded Time Petri Nets\",\"authors\":\"Agata Pólrola, P. Cybula, Artur Meski\",\"doi\":\"10.3233/FI-2014-1135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Time Petri nets by Merlin and Farber are a powerful modelling formalism. However, symbolic model checking methods for them consider in most cases the nets which are 1-safe, i.e., allow the places to contain at most one token. In our paper we present an approach which applies symbolic verification to testing reachability for time Petri nets without this restriction. We deal with the class of bounded nets restricted to disallow multiple enabledness of transitions, and present the method of reachability testing based on a translation into a satisfiability modulo theory (SMT).\",\"PeriodicalId\":286395,\"journal\":{\"name\":\"International Workshop on Concurrency, Specification and Programming\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on Concurrency, Specification and Programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/FI-2014-1135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Concurrency, Specification and Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/FI-2014-1135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

梅林和法伯的时间Petri网是一种强大的建模形式主义。然而,它们的符号模型检查方法在大多数情况下考虑的是1安全的网络,也就是说,允许位置最多包含一个令牌。在本文中,我们提出了一种将符号验证应用于时间Petri网的可达性测试而不受此限制的方法。我们处理了一类被限制为不允许多重可启用转换的有界网络,并提出了一种基于可满足模理论的可达性测试方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SMT-Based Reachability Checking for Bounded Time Petri Nets
Time Petri nets by Merlin and Farber are a powerful modelling formalism. However, symbolic model checking methods for them consider in most cases the nets which are 1-safe, i.e., allow the places to contain at most one token. In our paper we present an approach which applies symbolic verification to testing reachability for time Petri nets without this restriction. We deal with the class of bounded nets restricted to disallow multiple enabledness of transitions, and present the method of reachability testing based on a translation into a satisfiability modulo theory (SMT).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信