基于SMOTE和贝叶斯网络的火灾风险评估

Yanlu Shi, Jianguo Gao
{"title":"基于SMOTE和贝叶斯网络的火灾风险评估","authors":"Yanlu Shi, Jianguo Gao","doi":"10.1109/iip57348.2022.00088","DOIUrl":null,"url":null,"abstract":"Establishing fire historical data and index system is the key to solving the fire risk assessment problem. Based on this, this paper proposes a new fire risk assessment method. Firstly, aiming at the imbalance problem of fire history data, SMOTE algorithm is used to expand the small class of sample data and build an improved fire sample data set. Secondly, the improved fire data and expert knowledge are used to learn the structure and parameters of the Bayesian network. Finally, the risk assessment value is determined through the probabilistic inference of the Bayesian network. Applying this method to building fire risk assessment can effectively solve the problem of unbalanced fire data and improve the level of fire risk assessment.","PeriodicalId":412907,"journal":{"name":"2022 4th International Conference on Intelligent Information Processing (IIP)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fire Risk Assessment Based on SMOTE and Bayesian Network\",\"authors\":\"Yanlu Shi, Jianguo Gao\",\"doi\":\"10.1109/iip57348.2022.00088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Establishing fire historical data and index system is the key to solving the fire risk assessment problem. Based on this, this paper proposes a new fire risk assessment method. Firstly, aiming at the imbalance problem of fire history data, SMOTE algorithm is used to expand the small class of sample data and build an improved fire sample data set. Secondly, the improved fire data and expert knowledge are used to learn the structure and parameters of the Bayesian network. Finally, the risk assessment value is determined through the probabilistic inference of the Bayesian network. Applying this method to building fire risk assessment can effectively solve the problem of unbalanced fire data and improve the level of fire risk assessment.\",\"PeriodicalId\":412907,\"journal\":{\"name\":\"2022 4th International Conference on Intelligent Information Processing (IIP)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 4th International Conference on Intelligent Information Processing (IIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iip57348.2022.00088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 4th International Conference on Intelligent Information Processing (IIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iip57348.2022.00088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

建立火灾历史数据和指标体系是解决火灾风险评估问题的关键。在此基础上,提出了一种新的火灾风险评估方法。首先,针对火灾历史数据的不平衡问题,采用SMOTE算法对小类样本数据进行扩展,构建改进的火灾样本数据集;其次,利用改进后的火灾数据和专家知识学习贝叶斯网络的结构和参数;最后,通过贝叶斯网络的概率推理确定风险评估值。将该方法应用于建筑火灾风险评估,可以有效地解决火灾数据不平衡的问题,提高火灾风险评估水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fire Risk Assessment Based on SMOTE and Bayesian Network
Establishing fire historical data and index system is the key to solving the fire risk assessment problem. Based on this, this paper proposes a new fire risk assessment method. Firstly, aiming at the imbalance problem of fire history data, SMOTE algorithm is used to expand the small class of sample data and build an improved fire sample data set. Secondly, the improved fire data and expert knowledge are used to learn the structure and parameters of the Bayesian network. Finally, the risk assessment value is determined through the probabilistic inference of the Bayesian network. Applying this method to building fire risk assessment can effectively solve the problem of unbalanced fire data and improve the level of fire risk assessment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信