Taewook Kang, Yoontaek Lee, Myeong-Jae Park, Jaeha Kim
{"title":"一种15v, 40khz,能量回收率为62%的d类栅极驱动IC","authors":"Taewook Kang, Yoontaek Lee, Myeong-Jae Park, Jaeha Kim","doi":"10.1109/ASSCC.2013.6691061","DOIUrl":null,"url":null,"abstract":"This paper presents a new type of gate driver IC that can significantly reduce the gate switching loss by leveraging high-speed and low-power operation of custom integrated circuits. The gate driver itself works as a mini bidirectional buck converter, which charges and discharges the gate terminal of a power device (e.g. IGBT) by feeding a chain of short pulses whose widths gradually increase or decrease into an LC filter. A set of circuit techniques to minimize the energy consumption in generating these pulses at the required frequency of up to 50-MHz and duty-cycle resolution of 5% is presented. A prototype IC fabricated in a 0.25-μm HV CMOS demonstrates 27.8-mW power consumption or equivalently 62% energy recycling while switching a 120-nC IGBT at 40-kHz and 15-V.","PeriodicalId":296544,"journal":{"name":"2013 IEEE Asian Solid-State Circuits Conference (A-SSCC)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A 15-V, 40-kHz class-D gate driver IC with 62% energy recycling rate\",\"authors\":\"Taewook Kang, Yoontaek Lee, Myeong-Jae Park, Jaeha Kim\",\"doi\":\"10.1109/ASSCC.2013.6691061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new type of gate driver IC that can significantly reduce the gate switching loss by leveraging high-speed and low-power operation of custom integrated circuits. The gate driver itself works as a mini bidirectional buck converter, which charges and discharges the gate terminal of a power device (e.g. IGBT) by feeding a chain of short pulses whose widths gradually increase or decrease into an LC filter. A set of circuit techniques to minimize the energy consumption in generating these pulses at the required frequency of up to 50-MHz and duty-cycle resolution of 5% is presented. A prototype IC fabricated in a 0.25-μm HV CMOS demonstrates 27.8-mW power consumption or equivalently 62% energy recycling while switching a 120-nC IGBT at 40-kHz and 15-V.\",\"PeriodicalId\":296544,\"journal\":{\"name\":\"2013 IEEE Asian Solid-State Circuits Conference (A-SSCC)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Asian Solid-State Circuits Conference (A-SSCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASSCC.2013.6691061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Asian Solid-State Circuits Conference (A-SSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASSCC.2013.6691061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 15-V, 40-kHz class-D gate driver IC with 62% energy recycling rate
This paper presents a new type of gate driver IC that can significantly reduce the gate switching loss by leveraging high-speed and low-power operation of custom integrated circuits. The gate driver itself works as a mini bidirectional buck converter, which charges and discharges the gate terminal of a power device (e.g. IGBT) by feeding a chain of short pulses whose widths gradually increase or decrease into an LC filter. A set of circuit techniques to minimize the energy consumption in generating these pulses at the required frequency of up to 50-MHz and duty-cycle resolution of 5% is presented. A prototype IC fabricated in a 0.25-μm HV CMOS demonstrates 27.8-mW power consumption or equivalently 62% energy recycling while switching a 120-nC IGBT at 40-kHz and 15-V.