现代古典阿拉伯语的视觉语音识别

Pascal Damien
{"title":"现代古典阿拉伯语的视觉语音识别","authors":"Pascal Damien","doi":"10.1109/SHUSER.2011.6008499","DOIUrl":null,"url":null,"abstract":"Viseme-based Visual Speech Recognition (VSR) systems, using Hidden Markov Models (HMM) for phoneme recognition, generally use 3-state left-right HMM for each viseme to recognize. In this article, we propose a novel approach introducing a consonant-vowel detector and using two classifiers: an HMM based classifier for the recognition of the “consonant part” of the phoneme and a classifier for the “vowel part”. The benefits of such an approach include (1) reducing the number of hidden states and (2) reducing the number of HMMs. We tested our method on a limited set of words of the Modern Classic Arabic language and achieved a recognition rate of 81.7%. Moreover, the proposed model is speaker-independent and uses visemes as the basic units, thereby, making it applicable to any set of words of varying size or content.","PeriodicalId":193430,"journal":{"name":"2011 International Symposium on Humanities, Science and Engineering Research","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Visual speech recognition of Modern Classic Arabic language\",\"authors\":\"Pascal Damien\",\"doi\":\"10.1109/SHUSER.2011.6008499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Viseme-based Visual Speech Recognition (VSR) systems, using Hidden Markov Models (HMM) for phoneme recognition, generally use 3-state left-right HMM for each viseme to recognize. In this article, we propose a novel approach introducing a consonant-vowel detector and using two classifiers: an HMM based classifier for the recognition of the “consonant part” of the phoneme and a classifier for the “vowel part”. The benefits of such an approach include (1) reducing the number of hidden states and (2) reducing the number of HMMs. We tested our method on a limited set of words of the Modern Classic Arabic language and achieved a recognition rate of 81.7%. Moreover, the proposed model is speaker-independent and uses visemes as the basic units, thereby, making it applicable to any set of words of varying size or content.\",\"PeriodicalId\":193430,\"journal\":{\"name\":\"2011 International Symposium on Humanities, Science and Engineering Research\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Symposium on Humanities, Science and Engineering Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SHUSER.2011.6008499\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Symposium on Humanities, Science and Engineering Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SHUSER.2011.6008499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

基于viseme的视觉语音识别(VSR)系统使用隐马尔可夫模型(HMM)进行音素识别,一般对每个viseme使用三态左右HMM进行识别。在本文中,我们提出了一种新的方法,引入了一个辅音-元音检测器,并使用了两个分类器:一个基于HMM的分类器用于识别音素的“辅音部分”,一个分类器用于识别“元音部分”。这种方法的好处包括(1)减少隐藏状态的数量和(2)减少hmm的数量。我们在有限的现代经典阿拉伯语单词集上测试了我们的方法,识别率达到了81.7%。此外,所提出的模型是独立于说话人的,并使用词素作为基本单位,从而使其适用于任何大小或内容不同的词集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visual speech recognition of Modern Classic Arabic language
Viseme-based Visual Speech Recognition (VSR) systems, using Hidden Markov Models (HMM) for phoneme recognition, generally use 3-state left-right HMM for each viseme to recognize. In this article, we propose a novel approach introducing a consonant-vowel detector and using two classifiers: an HMM based classifier for the recognition of the “consonant part” of the phoneme and a classifier for the “vowel part”. The benefits of such an approach include (1) reducing the number of hidden states and (2) reducing the number of HMMs. We tested our method on a limited set of words of the Modern Classic Arabic language and achieved a recognition rate of 81.7%. Moreover, the proposed model is speaker-independent and uses visemes as the basic units, thereby, making it applicable to any set of words of varying size or content.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信