S. Mukhopadhyay, Changhong Tang, Jeffrey R. Huang, Mulong Yu, M. Palakal
{"title":"基因序列分类算法的比较研究","authors":"S. Mukhopadhyay, Changhong Tang, Jeffrey R. Huang, Mulong Yu, M. Palakal","doi":"10.1109/NNSP.2002.1030017","DOIUrl":null,"url":null,"abstract":"Classification of genetic sequence data available in public and private databases is an important problem in using, understanding, retrieving, filtering and correlating such large volumes of information. Although a significant amount of research effort is being spent internationally on this problem, very few studies exist that compare different classification approaches in terms of an objective and quantitative classification performance criterion. In this paper, we present experimental studies for classification of genetic sequences using both unsupervised and supervised approaches, focusing on both computational effort as well as a suitably defined classification performance measure. The results indicate that both unsupervised classification using the Maximin algorithm combined with FASTA sequence alignment algorithm and supervised classification using artificial neural network have good classification performance, with the unsupervised classification performs better and the supervised classification performs faster. A trade-off between the quality of classification and the computational efforts exists. The utilization of these classifiers for retrieval, filtering and correlation of genetic information as well as prediction of functions and structures will be logical future directions for further research.","PeriodicalId":117945,"journal":{"name":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"A comparative study of genetic sequence classification algorithms\",\"authors\":\"S. Mukhopadhyay, Changhong Tang, Jeffrey R. Huang, Mulong Yu, M. Palakal\",\"doi\":\"10.1109/NNSP.2002.1030017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classification of genetic sequence data available in public and private databases is an important problem in using, understanding, retrieving, filtering and correlating such large volumes of information. Although a significant amount of research effort is being spent internationally on this problem, very few studies exist that compare different classification approaches in terms of an objective and quantitative classification performance criterion. In this paper, we present experimental studies for classification of genetic sequences using both unsupervised and supervised approaches, focusing on both computational effort as well as a suitably defined classification performance measure. The results indicate that both unsupervised classification using the Maximin algorithm combined with FASTA sequence alignment algorithm and supervised classification using artificial neural network have good classification performance, with the unsupervised classification performs better and the supervised classification performs faster. A trade-off between the quality of classification and the computational efforts exists. The utilization of these classifiers for retrieval, filtering and correlation of genetic information as well as prediction of functions and structures will be logical future directions for further research.\",\"PeriodicalId\":117945,\"journal\":{\"name\":\"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NNSP.2002.1030017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2002.1030017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A comparative study of genetic sequence classification algorithms
Classification of genetic sequence data available in public and private databases is an important problem in using, understanding, retrieving, filtering and correlating such large volumes of information. Although a significant amount of research effort is being spent internationally on this problem, very few studies exist that compare different classification approaches in terms of an objective and quantitative classification performance criterion. In this paper, we present experimental studies for classification of genetic sequences using both unsupervised and supervised approaches, focusing on both computational effort as well as a suitably defined classification performance measure. The results indicate that both unsupervised classification using the Maximin algorithm combined with FASTA sequence alignment algorithm and supervised classification using artificial neural network have good classification performance, with the unsupervised classification performs better and the supervised classification performs faster. A trade-off between the quality of classification and the computational efforts exists. The utilization of these classifiers for retrieval, filtering and correlation of genetic information as well as prediction of functions and structures will be logical future directions for further research.