基于流形学习的隐式核算法提高分类精度

Yuexian Hou, Jingyi Wu, Pilian He
{"title":"基于流形学习的隐式核算法提高分类精度","authors":"Yuexian Hou, Jingyi Wu, Pilian He","doi":"10.1109/IJCNN.2006.246850","DOIUrl":null,"url":null,"abstract":"Recently several algorithms, e.g., Isomap, self-organizing isometric embedding (SIE), Locally linear embedding (LLE) and Laplacian eigenmap, were proposed to deal with the problem of learning low dimensional nonlinear manifold embedded in a high dimensional space. Motivated by these algorithms, there is a trend of exploiting the intrinsic manifold structure of the data to improve precision and/or efficiency of classification under the assumption that the high dimensional observable data resides on a low dimensional manifold of latten variables. But these methods suffer their flaws respectively. In this work, we unified the problems of supervised manifold learning in a kernel view and proposed a novel implicit kernel construction method, i. e. supervised locally principal direction preservation kernel (SLPDK) construction, to combine the advantages of current implicit kernel construction methods motivated by manifold learning and try to overcome their disadvantages. SLPDK uses class information and locally principal direction of manifold to implement an approximately symmetric embedding. Implicit kernels constructed by SLPDK have a natural geometrical explanation and can gain a considerable classification precision improvement when the condition of locally linear manifold separability (LLMS) holds.","PeriodicalId":134599,"journal":{"name":"IEEE International Joint Conference on Neural Network","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improving classification precision by implicit kernels motivated by manifold learning\",\"authors\":\"Yuexian Hou, Jingyi Wu, Pilian He\",\"doi\":\"10.1109/IJCNN.2006.246850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently several algorithms, e.g., Isomap, self-organizing isometric embedding (SIE), Locally linear embedding (LLE) and Laplacian eigenmap, were proposed to deal with the problem of learning low dimensional nonlinear manifold embedded in a high dimensional space. Motivated by these algorithms, there is a trend of exploiting the intrinsic manifold structure of the data to improve precision and/or efficiency of classification under the assumption that the high dimensional observable data resides on a low dimensional manifold of latten variables. But these methods suffer their flaws respectively. In this work, we unified the problems of supervised manifold learning in a kernel view and proposed a novel implicit kernel construction method, i. e. supervised locally principal direction preservation kernel (SLPDK) construction, to combine the advantages of current implicit kernel construction methods motivated by manifold learning and try to overcome their disadvantages. SLPDK uses class information and locally principal direction of manifold to implement an approximately symmetric embedding. Implicit kernels constructed by SLPDK have a natural geometrical explanation and can gain a considerable classification precision improvement when the condition of locally linear manifold separability (LLMS) holds.\",\"PeriodicalId\":134599,\"journal\":{\"name\":\"IEEE International Joint Conference on Neural Network\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Joint Conference on Neural Network\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2006.246850\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Joint Conference on Neural Network","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2006.246850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving classification precision by implicit kernels motivated by manifold learning
Recently several algorithms, e.g., Isomap, self-organizing isometric embedding (SIE), Locally linear embedding (LLE) and Laplacian eigenmap, were proposed to deal with the problem of learning low dimensional nonlinear manifold embedded in a high dimensional space. Motivated by these algorithms, there is a trend of exploiting the intrinsic manifold structure of the data to improve precision and/or efficiency of classification under the assumption that the high dimensional observable data resides on a low dimensional manifold of latten variables. But these methods suffer their flaws respectively. In this work, we unified the problems of supervised manifold learning in a kernel view and proposed a novel implicit kernel construction method, i. e. supervised locally principal direction preservation kernel (SLPDK) construction, to combine the advantages of current implicit kernel construction methods motivated by manifold learning and try to overcome their disadvantages. SLPDK uses class information and locally principal direction of manifold to implement an approximately symmetric embedding. Implicit kernels constructed by SLPDK have a natural geometrical explanation and can gain a considerable classification precision improvement when the condition of locally linear manifold separability (LLMS) holds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信