基于WPA-BP神经网络的民用飞机空调冷却系统故障诊断方法

Xinghao Zhang, Jiaxue Liu
{"title":"基于WPA-BP神经网络的民用飞机空调冷却系统故障诊断方法","authors":"Xinghao Zhang, Jiaxue Liu","doi":"10.1117/12.2685828","DOIUrl":null,"url":null,"abstract":"Combined with the current problems in the maintenance of civil air conditioning system, in order to improve the efficiency of civil fault diagnosis and reduce the troubleshooting time, a fault diagnosis method based on Wolf pack algorithm was proposed to optimize BP neural network. The experimental results show that compared with the standard BP neural network, WPA-BP algorithm can effectively shorten the training time, improve the accuracy of fault diagnosis, and has practical application value.","PeriodicalId":305812,"journal":{"name":"International Conference on Electronic Information Technology","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fault diagnosis method of civil aircraft air conditioning cooling system based on WPA-BP neural network\",\"authors\":\"Xinghao Zhang, Jiaxue Liu\",\"doi\":\"10.1117/12.2685828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Combined with the current problems in the maintenance of civil air conditioning system, in order to improve the efficiency of civil fault diagnosis and reduce the troubleshooting time, a fault diagnosis method based on Wolf pack algorithm was proposed to optimize BP neural network. The experimental results show that compared with the standard BP neural network, WPA-BP algorithm can effectively shorten the training time, improve the accuracy of fault diagnosis, and has practical application value.\",\"PeriodicalId\":305812,\"journal\":{\"name\":\"International Conference on Electronic Information Technology\",\"volume\":\"92 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Electronic Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2685828\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Electronic Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2685828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

结合当前民用空调系统维修中存在的问题,为了提高民用空调系统故障诊断效率,减少故障排除时间,提出了一种基于狼群算法的优化BP神经网络故障诊断方法。实验结果表明,与标准BP神经网络相比,WPA-BP算法能有效缩短训练时间,提高故障诊断的准确率,具有实际应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fault diagnosis method of civil aircraft air conditioning cooling system based on WPA-BP neural network
Combined with the current problems in the maintenance of civil air conditioning system, in order to improve the efficiency of civil fault diagnosis and reduce the troubleshooting time, a fault diagnosis method based on Wolf pack algorithm was proposed to optimize BP neural network. The experimental results show that compared with the standard BP neural network, WPA-BP algorithm can effectively shorten the training time, improve the accuracy of fault diagnosis, and has practical application value.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信