一种高效的基于lpp的垃圾邮件过滤算法

Ziqiang Wang, Xia Sun
{"title":"一种高效的基于lpp的垃圾邮件过滤算法","authors":"Ziqiang Wang, Xia Sun","doi":"10.1109/ICCT.2008.4716081","DOIUrl":null,"url":null,"abstract":"With the fast expansion of the Internet globally in the last decade, the spam e-mail has become a main problem of the email service for Internet service providers, corporate and private users. To efficiently solve the spam filtering problems, a spam mail filtering method based on locality pursuit projection (LPP) and nearest feature line (NFL) classifier is proposed in this paper. Experimental results show that the proposed algorithm achieves much better performance than other traditional spam filtering methods.","PeriodicalId":259577,"journal":{"name":"2008 11th IEEE International Conference on Communication Technology","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An efficient LPP-based spam filtering algorithm\",\"authors\":\"Ziqiang Wang, Xia Sun\",\"doi\":\"10.1109/ICCT.2008.4716081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the fast expansion of the Internet globally in the last decade, the spam e-mail has become a main problem of the email service for Internet service providers, corporate and private users. To efficiently solve the spam filtering problems, a spam mail filtering method based on locality pursuit projection (LPP) and nearest feature line (NFL) classifier is proposed in this paper. Experimental results show that the proposed algorithm achieves much better performance than other traditional spam filtering methods.\",\"PeriodicalId\":259577,\"journal\":{\"name\":\"2008 11th IEEE International Conference on Communication Technology\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 11th IEEE International Conference on Communication Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCT.2008.4716081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 11th IEEE International Conference on Communication Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCT.2008.4716081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近十年来,随着互联网在全球范围内的快速发展,垃圾邮件已成为互联网服务提供商、企业和个人用户电子邮件服务的主要问题。为了有效地解决垃圾邮件过滤问题,本文提出了一种基于局部追踪投影(LPP)和最近特征线(NFL)分类器的垃圾邮件过滤方法。实验结果表明,该算法比其他传统的垃圾邮件过滤方法具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An efficient LPP-based spam filtering algorithm
With the fast expansion of the Internet globally in the last decade, the spam e-mail has become a main problem of the email service for Internet service providers, corporate and private users. To efficiently solve the spam filtering problems, a spam mail filtering method based on locality pursuit projection (LPP) and nearest feature line (NFL) classifier is proposed in this paper. Experimental results show that the proposed algorithm achieves much better performance than other traditional spam filtering methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信