{"title":"纳米技术在种子灌浆和种子强化中的应用进展","authors":"Raghav Garg, Sudha Maheshwari","doi":"10.53555/eijaer.v9i1.68","DOIUrl":null,"url":null,"abstract":"A new agricultural revolution is required to improve crop yield while also ensuring food quality and safety in a sustainable manner. Nano-priming affects biochemical pathways as well as the equilibrium of reactive oxygen compounds and plants growth hormones. This enhances stress and disease tolerance, resulting in a decrease in fertilizers and pesticides. Nano-priming alters biochemical systems and the balance of reactive oxygen compounds and PGR, causing stress and disease resistance and a reduction in fertilizers and pesticides. The current study gives an overview of achievements in the sector, highlighting the obstacles and opportunities for using nanotechnology in seed nano-priming to contribute to sustainable agriculture practices. Nano priming can be treated to seeds to protect them during storage, promote germination, germination synchronization, and plant development, and boost crop tolerance to biotic or abiotic stress conditions, which can assist to minimize the amount of pesticides and fertilizers needed.","PeriodicalId":319265,"journal":{"name":"EPH - International Journal of Agriculture and Environmental Research","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SEED PRIMING AND FORTIFICATION OF SEEDS USING NANOTECHNOLOGY: A REVIEW\",\"authors\":\"Raghav Garg, Sudha Maheshwari\",\"doi\":\"10.53555/eijaer.v9i1.68\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new agricultural revolution is required to improve crop yield while also ensuring food quality and safety in a sustainable manner. Nano-priming affects biochemical pathways as well as the equilibrium of reactive oxygen compounds and plants growth hormones. This enhances stress and disease tolerance, resulting in a decrease in fertilizers and pesticides. Nano-priming alters biochemical systems and the balance of reactive oxygen compounds and PGR, causing stress and disease resistance and a reduction in fertilizers and pesticides. The current study gives an overview of achievements in the sector, highlighting the obstacles and opportunities for using nanotechnology in seed nano-priming to contribute to sustainable agriculture practices. Nano priming can be treated to seeds to protect them during storage, promote germination, germination synchronization, and plant development, and boost crop tolerance to biotic or abiotic stress conditions, which can assist to minimize the amount of pesticides and fertilizers needed.\",\"PeriodicalId\":319265,\"journal\":{\"name\":\"EPH - International Journal of Agriculture and Environmental Research\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPH - International Journal of Agriculture and Environmental Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53555/eijaer.v9i1.68\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPH - International Journal of Agriculture and Environmental Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53555/eijaer.v9i1.68","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SEED PRIMING AND FORTIFICATION OF SEEDS USING NANOTECHNOLOGY: A REVIEW
A new agricultural revolution is required to improve crop yield while also ensuring food quality and safety in a sustainable manner. Nano-priming affects biochemical pathways as well as the equilibrium of reactive oxygen compounds and plants growth hormones. This enhances stress and disease tolerance, resulting in a decrease in fertilizers and pesticides. Nano-priming alters biochemical systems and the balance of reactive oxygen compounds and PGR, causing stress and disease resistance and a reduction in fertilizers and pesticides. The current study gives an overview of achievements in the sector, highlighting the obstacles and opportunities for using nanotechnology in seed nano-priming to contribute to sustainable agriculture practices. Nano priming can be treated to seeds to protect them during storage, promote germination, germination synchronization, and plant development, and boost crop tolerance to biotic or abiotic stress conditions, which can assist to minimize the amount of pesticides and fertilizers needed.