K3地毯在最小的有理表面及其平滑

Purnaprajna Bangere, Jayan Mukherjee, D. Raychaudhury
{"title":"K3地毯在最小的有理表面及其平滑","authors":"Purnaprajna Bangere, Jayan Mukherjee, D. Raychaudhury","doi":"10.1142/S0129167X21500324","DOIUrl":null,"url":null,"abstract":"In this article, we study K3 double structures on minimal rational surfaces $Y$. The results show there are infinitely many non-split abstract K3 double structures on $Y = \\mathbb{F}_e$ parametrized by $\\mathbb P^1$, countably many of which are projective. For $Y = \\mathbb{P}^2$ there exist a unique non-split abstract K3 double structure which is non-projective (see Drezet's article in arXiv:2004.04921). We show that all projective K3 carpets can be smoothed to a smooth K3 surface. One of the byproducts of the proof shows that unless $Y$ is embedded as a variety of minimal degree, there are infinitely many embedded K3 carpet structures on $Y$. Moreover, we show any embedded projective K3 carpet on $\\mathbb F_e$ with $e<3$ arises as a flat limit of embeddings degenerating to $2:1$ morphism. The rest do not, but we still prove the smoothing result. We further show that the Hilbert points corresponding to the projective K3 carpets supported on $\\mathbb{F}_e$, embedded by a complete linear series are smooth points if and only if $0\\leq e\\leq 2$. In contrast, Hilbert points corresponding to projective K3 carpets supported on $\\mathbb{P}^2$ and embedded by a complete linear series are always smooth. The results in an a recent paper of Bangere-Gallego-Gonzalez show that there are no higher dimensional analogues of the results in this article.","PeriodicalId":278201,"journal":{"name":"arXiv: Algebraic Geometry","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"K3 carpets on minimal rational surfaces and their smoothings\",\"authors\":\"Purnaprajna Bangere, Jayan Mukherjee, D. Raychaudhury\",\"doi\":\"10.1142/S0129167X21500324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we study K3 double structures on minimal rational surfaces $Y$. The results show there are infinitely many non-split abstract K3 double structures on $Y = \\\\mathbb{F}_e$ parametrized by $\\\\mathbb P^1$, countably many of which are projective. For $Y = \\\\mathbb{P}^2$ there exist a unique non-split abstract K3 double structure which is non-projective (see Drezet's article in arXiv:2004.04921). We show that all projective K3 carpets can be smoothed to a smooth K3 surface. One of the byproducts of the proof shows that unless $Y$ is embedded as a variety of minimal degree, there are infinitely many embedded K3 carpet structures on $Y$. Moreover, we show any embedded projective K3 carpet on $\\\\mathbb F_e$ with $e<3$ arises as a flat limit of embeddings degenerating to $2:1$ morphism. The rest do not, but we still prove the smoothing result. We further show that the Hilbert points corresponding to the projective K3 carpets supported on $\\\\mathbb{F}_e$, embedded by a complete linear series are smooth points if and only if $0\\\\leq e\\\\leq 2$. In contrast, Hilbert points corresponding to projective K3 carpets supported on $\\\\mathbb{P}^2$ and embedded by a complete linear series are always smooth. The results in an a recent paper of Bangere-Gallego-Gonzalez show that there are no higher dimensional analogues of the results in this article.\",\"PeriodicalId\":278201,\"journal\":{\"name\":\"arXiv: Algebraic Geometry\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0129167X21500324\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0129167X21500324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文研究了最小有理曲面上的K3双结构 $Y$. 结果表明,表面上存在无穷多个非分裂的抽象K3双结构 $Y = \mathbb{F}_e$ 参数化为 $\mathbb P^1$,其中许多是投射性的。因为 $Y = \mathbb{P}^2$ 存在一个唯一的非投影的非分裂抽象K3双结构(见Drezet在arXiv:2004.04921中的文章)。我们证明了所有投影的K3地毯都可以平滑到光滑的K3表面。证明的一个副产品表明,除非 $Y$ 作为各种最小嵌入度,有无限多个嵌入的K3地毯结构上 $Y$. 此外,我们显示了任何嵌入的投影K3地毯 $\mathbb F_e$ 有 $e<3$ 产生于嵌入的平面极限,退化为 $2:1$ 态射。其余的没有,但我们仍然证明了平滑的结果。我们进一步证明了希尔伯特点对应于投影的K3地毯 $\mathbb{F}_e$,由完全线性序列嵌入的光滑点当且仅当 $0\leq e\leq 2$. 相反,希尔伯特点对应于K3地毯的投影支撑上 $\mathbb{P}^2$ 而由完全线性序列嵌入的总是光滑的。Bangere-Gallego-Gonzalez最近发表的一篇论文的结果表明,本文的结果没有更高维度的类似物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
K3 carpets on minimal rational surfaces and their smoothings
In this article, we study K3 double structures on minimal rational surfaces $Y$. The results show there are infinitely many non-split abstract K3 double structures on $Y = \mathbb{F}_e$ parametrized by $\mathbb P^1$, countably many of which are projective. For $Y = \mathbb{P}^2$ there exist a unique non-split abstract K3 double structure which is non-projective (see Drezet's article in arXiv:2004.04921). We show that all projective K3 carpets can be smoothed to a smooth K3 surface. One of the byproducts of the proof shows that unless $Y$ is embedded as a variety of minimal degree, there are infinitely many embedded K3 carpet structures on $Y$. Moreover, we show any embedded projective K3 carpet on $\mathbb F_e$ with $e<3$ arises as a flat limit of embeddings degenerating to $2:1$ morphism. The rest do not, but we still prove the smoothing result. We further show that the Hilbert points corresponding to the projective K3 carpets supported on $\mathbb{F}_e$, embedded by a complete linear series are smooth points if and only if $0\leq e\leq 2$. In contrast, Hilbert points corresponding to projective K3 carpets supported on $\mathbb{P}^2$ and embedded by a complete linear series are always smooth. The results in an a recent paper of Bangere-Gallego-Gonzalez show that there are no higher dimensional analogues of the results in this article.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信