Rui Pan, Yuxin Wang, Wei Huang, Mao Tan, Jing Chen, Tongshen Liu
{"title":"基于健康特征提取和灰色关联分析的锂离子电池剩余容量估计","authors":"Rui Pan, Yuxin Wang, Wei Huang, Mao Tan, Jing Chen, Tongshen Liu","doi":"10.1109/ICCSIE55183.2023.10175267","DOIUrl":null,"url":null,"abstract":"Lithium-ion battery remaining capacity estimation mainly adopts the model or data-driven method combined with feature extraction. In contemplation of deal with the issues of incomplete feature extraction procedure and poor estimation accuracy of extracted features, a data-driven lithium-ion battery remaining capacity estimation structure is suggested. To begin with, the charge and discharge data are fitted, time series analysis and frequency domain analysis are carried out to extract a set of health features. Then screen out features with high relation by gray relation analysis. Finally, the screened features are adopted as input to train a support vector regression model for estimating the lithium-ion batteries remaining capacity. Test and verify the proposed method on of NASA and CACLE lithium-ion battery cycle fading datasets, and the experimental results show the capability and superiority of the method.","PeriodicalId":391372,"journal":{"name":"2022 First International Conference on Cyber-Energy Systems and Intelligent Energy (ICCSIE)","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Remaining Capacity Estimation of Lithium-ion Batteries based on Health Features Extraction and Gray Relation Analysis\",\"authors\":\"Rui Pan, Yuxin Wang, Wei Huang, Mao Tan, Jing Chen, Tongshen Liu\",\"doi\":\"10.1109/ICCSIE55183.2023.10175267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lithium-ion battery remaining capacity estimation mainly adopts the model or data-driven method combined with feature extraction. In contemplation of deal with the issues of incomplete feature extraction procedure and poor estimation accuracy of extracted features, a data-driven lithium-ion battery remaining capacity estimation structure is suggested. To begin with, the charge and discharge data are fitted, time series analysis and frequency domain analysis are carried out to extract a set of health features. Then screen out features with high relation by gray relation analysis. Finally, the screened features are adopted as input to train a support vector regression model for estimating the lithium-ion batteries remaining capacity. Test and verify the proposed method on of NASA and CACLE lithium-ion battery cycle fading datasets, and the experimental results show the capability and superiority of the method.\",\"PeriodicalId\":391372,\"journal\":{\"name\":\"2022 First International Conference on Cyber-Energy Systems and Intelligent Energy (ICCSIE)\",\"volume\":\"93 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 First International Conference on Cyber-Energy Systems and Intelligent Energy (ICCSIE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSIE55183.2023.10175267\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 First International Conference on Cyber-Energy Systems and Intelligent Energy (ICCSIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSIE55183.2023.10175267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Remaining Capacity Estimation of Lithium-ion Batteries based on Health Features Extraction and Gray Relation Analysis
Lithium-ion battery remaining capacity estimation mainly adopts the model or data-driven method combined with feature extraction. In contemplation of deal with the issues of incomplete feature extraction procedure and poor estimation accuracy of extracted features, a data-driven lithium-ion battery remaining capacity estimation structure is suggested. To begin with, the charge and discharge data are fitted, time series analysis and frequency domain analysis are carried out to extract a set of health features. Then screen out features with high relation by gray relation analysis. Finally, the screened features are adopted as input to train a support vector regression model for estimating the lithium-ion batteries remaining capacity. Test and verify the proposed method on of NASA and CACLE lithium-ion battery cycle fading datasets, and the experimental results show the capability and superiority of the method.