基于深度学习的课堂学习行为分析

R. Fu, Tongtong Wu, Zuying Luo, Fuqing Duan, Xuejun Qiao, Ping Guo
{"title":"基于深度学习的课堂学习行为分析","authors":"R. Fu, Tongtong Wu, Zuying Luo, Fuqing Duan, Xuejun Qiao, Ping Guo","doi":"10.1109/ICICIP47338.2019.9012177","DOIUrl":null,"url":null,"abstract":"In this work, we study learning behavior analysis for automatic evaluation of the classroom teaching. We define five classroom learning behaviors including listen, fatigue, hand-up, sideways and read-write, and construct a class-room learning behavior dataset named as ActRec-Classroom, which includes five categories with 5,126 images in total. With the aid of convolutional neural network (CNN), we propose a classroom learning behavior analysis system framework. Firstly, Faster R-CNN is used to detect human body. Then OpenPose is used to extract key points of human skeleton, faces and fingers. Finally, a CNN based classifier is designed for action recognition. Extensive experiments validate the proposed system. The validation accuracy reaches 92.86% on average, and it meets the need of learning behavior analysis in the real classroom teaching environment.","PeriodicalId":431872,"journal":{"name":"2019 Tenth International Conference on Intelligent Control and Information Processing (ICICIP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Learning Behavior Analysis in Classroom Based on Deep Learning\",\"authors\":\"R. Fu, Tongtong Wu, Zuying Luo, Fuqing Duan, Xuejun Qiao, Ping Guo\",\"doi\":\"10.1109/ICICIP47338.2019.9012177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we study learning behavior analysis for automatic evaluation of the classroom teaching. We define five classroom learning behaviors including listen, fatigue, hand-up, sideways and read-write, and construct a class-room learning behavior dataset named as ActRec-Classroom, which includes five categories with 5,126 images in total. With the aid of convolutional neural network (CNN), we propose a classroom learning behavior analysis system framework. Firstly, Faster R-CNN is used to detect human body. Then OpenPose is used to extract key points of human skeleton, faces and fingers. Finally, a CNN based classifier is designed for action recognition. Extensive experiments validate the proposed system. The validation accuracy reaches 92.86% on average, and it meets the need of learning behavior analysis in the real classroom teaching environment.\",\"PeriodicalId\":431872,\"journal\":{\"name\":\"2019 Tenth International Conference on Intelligent Control and Information Processing (ICICIP)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Tenth International Conference on Intelligent Control and Information Processing (ICICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICIP47338.2019.9012177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Tenth International Conference on Intelligent Control and Information Processing (ICICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP47338.2019.9012177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

在本研究中,我们研究了用于课堂教学自动评价的学习行为分析。我们定义了听课、疲劳、举手、侧边和读写五种课堂学习行为,构建了ActRec-Classroom课堂学习行为数据集,该数据集包含5个类别,共5126张图片。借助卷积神经网络(CNN),提出了一个课堂学习行为分析系统框架。首先,采用Faster R-CNN对人体进行检测。然后利用OpenPose提取人体骨骼、面部和手指的关键点。最后,设计了基于CNN的动作识别分类器。大量的实验验证了所提出的系统。验证准确率平均达到92.86%,满足真实课堂教学环境下学习行为分析的需要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Behavior Analysis in Classroom Based on Deep Learning
In this work, we study learning behavior analysis for automatic evaluation of the classroom teaching. We define five classroom learning behaviors including listen, fatigue, hand-up, sideways and read-write, and construct a class-room learning behavior dataset named as ActRec-Classroom, which includes five categories with 5,126 images in total. With the aid of convolutional neural network (CNN), we propose a classroom learning behavior analysis system framework. Firstly, Faster R-CNN is used to detect human body. Then OpenPose is used to extract key points of human skeleton, faces and fingers. Finally, a CNN based classifier is designed for action recognition. Extensive experiments validate the proposed system. The validation accuracy reaches 92.86% on average, and it meets the need of learning behavior analysis in the real classroom teaching environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信