神经生物学上似是而非的向量符号架构

Daniel E. Padilla, M. McDonnell
{"title":"神经生物学上似是而非的向量符号架构","authors":"Daniel E. Padilla, M. McDonnell","doi":"10.1109/ICSC.2014.40","DOIUrl":null,"url":null,"abstract":"Vector Symbolic Architectures (VSA) are approaches to representing symbols and structured combinations of symbols as high-dimensional vectors. They have applications in machine learning and for understanding information processing in neurobiology. VSAs are typically described in an abstract mathematical form in terms of vectors and operations on vectors. In this work, we show that a machine learning approach known as hierarchical temporal memory, which is based on the anatomy and function of mammalian neocortex, is inherently capable of supporting important VSA functionality. This follows because the approach learns sequences of semantics-preserving sparse distributed representations.","PeriodicalId":175352,"journal":{"name":"2014 IEEE International Conference on Semantic Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Neurobiologically Plausible Vector Symbolic Architecture\",\"authors\":\"Daniel E. Padilla, M. McDonnell\",\"doi\":\"10.1109/ICSC.2014.40\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vector Symbolic Architectures (VSA) are approaches to representing symbols and structured combinations of symbols as high-dimensional vectors. They have applications in machine learning and for understanding information processing in neurobiology. VSAs are typically described in an abstract mathematical form in terms of vectors and operations on vectors. In this work, we show that a machine learning approach known as hierarchical temporal memory, which is based on the anatomy and function of mammalian neocortex, is inherently capable of supporting important VSA functionality. This follows because the approach learns sequences of semantics-preserving sparse distributed representations.\",\"PeriodicalId\":175352,\"journal\":{\"name\":\"2014 IEEE International Conference on Semantic Computing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Semantic Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSC.2014.40\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Semantic Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSC.2014.40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

向量符号架构(VSA)是将符号和符号的结构化组合表示为高维向量的方法。它们在机器学习和理解神经生物学中的信息处理方面有应用。vsa通常以抽象的数学形式用向量和对向量的运算来描述。在这项工作中,我们展示了一种被称为分层时间记忆的机器学习方法,它基于哺乳动物新皮层的解剖和功能,本质上能够支持重要的VSA功能。这是因为该方法学习了保持语义的稀疏分布表示序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Neurobiologically Plausible Vector Symbolic Architecture
Vector Symbolic Architectures (VSA) are approaches to representing symbols and structured combinations of symbols as high-dimensional vectors. They have applications in machine learning and for understanding information processing in neurobiology. VSAs are typically described in an abstract mathematical form in terms of vectors and operations on vectors. In this work, we show that a machine learning approach known as hierarchical temporal memory, which is based on the anatomy and function of mammalian neocortex, is inherently capable of supporting important VSA functionality. This follows because the approach learns sequences of semantics-preserving sparse distributed representations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信