{"title":"使用统计运动检测和傅立叶描述子检测和识别运动物体","authors":"D. Toth, T. Aach","doi":"10.1109/ICIAP.2003.1234088","DOIUrl":null,"url":null,"abstract":"Object recognition, i.e. classification of objects into one of several known object classes, generally is a difficult task. In this paper we address the problem of detecting and classifying moving objects in image sequences from traffic scenes recorded with a static camera. In the first step, a statistical, illumination invariant motion detection algorithm is used to produce binary masks of the scene-changes. Next, Fourier descriptors of the shapes from the refined masks are computed and used as feature vectors describing the different objects in the scene. Finally, a feedforward neural net is used to distinguish between humans, vehicles, and background clutter.","PeriodicalId":218076,"journal":{"name":"12th International Conference on Image Analysis and Processing, 2003.Proceedings.","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"73","resultStr":"{\"title\":\"Detection and recognition of moving objects using statistical motion detection and Fourier descriptors\",\"authors\":\"D. Toth, T. Aach\",\"doi\":\"10.1109/ICIAP.2003.1234088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Object recognition, i.e. classification of objects into one of several known object classes, generally is a difficult task. In this paper we address the problem of detecting and classifying moving objects in image sequences from traffic scenes recorded with a static camera. In the first step, a statistical, illumination invariant motion detection algorithm is used to produce binary masks of the scene-changes. Next, Fourier descriptors of the shapes from the refined masks are computed and used as feature vectors describing the different objects in the scene. Finally, a feedforward neural net is used to distinguish between humans, vehicles, and background clutter.\",\"PeriodicalId\":218076,\"journal\":{\"name\":\"12th International Conference on Image Analysis and Processing, 2003.Proceedings.\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"73\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"12th International Conference on Image Analysis and Processing, 2003.Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIAP.2003.1234088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"12th International Conference on Image Analysis and Processing, 2003.Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAP.2003.1234088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Detection and recognition of moving objects using statistical motion detection and Fourier descriptors
Object recognition, i.e. classification of objects into one of several known object classes, generally is a difficult task. In this paper we address the problem of detecting and classifying moving objects in image sequences from traffic scenes recorded with a static camera. In the first step, a statistical, illumination invariant motion detection algorithm is used to produce binary masks of the scene-changes. Next, Fourier descriptors of the shapes from the refined masks are computed and used as feature vectors describing the different objects in the scene. Finally, a feedforward neural net is used to distinguish between humans, vehicles, and background clutter.