{"title":"DL-RSIM:为深度学习提供可靠的基于reram的加速器的仿真框架","authors":"Meng-Yao Lin, Hsiang-Yun Cheng, Wei-Ting Lin, Tzu-Hsien Yang, I-Ching Tseng, Chia-Lin Yang, Han-Wen Hu, Hung-Sheng Chang, Hsiang-Pang Li, Meng-Fan Chang","doi":"10.1145/3240765.3240800","DOIUrl":null,"url":null,"abstract":"Memristor-based deep learning accelerators provide a promising solution to improve the energy efficiency of neuromorphic computing systems. However, the electrical properties and crossbar structure of memristors make these accelerators error-prone. To enable reliable memristor-based accelerators, a simulation platform is needed to precisely analyze the impact of non-ideal circuit and device properties on the inference accuracy. In this paper, we propose a flexible simulation framework, DL-RSIM, to tackle this challenge. DL-RSIM simulates the error rates of every sum-of-products computation in the memristor-based accelerator and injects the errors in the targeted TensorFlow-based neural network model. A rich set of reliability impact factors are explored by DL-RSIM, and it can be incorporated with any deep learning neural network implemented by TensorFlow. Using three representative convolutional neural networks as case studies, we show that DL-RSIM can guide chip designers to choose a reliability-friendly design option and develop reliability optimization techniques.","PeriodicalId":413037,"journal":{"name":"2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":"{\"title\":\"DL-RSIM: A Simulation Framework to Enable Reliable ReRAM-based Accelerators for Deep Learning\",\"authors\":\"Meng-Yao Lin, Hsiang-Yun Cheng, Wei-Ting Lin, Tzu-Hsien Yang, I-Ching Tseng, Chia-Lin Yang, Han-Wen Hu, Hung-Sheng Chang, Hsiang-Pang Li, Meng-Fan Chang\",\"doi\":\"10.1145/3240765.3240800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Memristor-based deep learning accelerators provide a promising solution to improve the energy efficiency of neuromorphic computing systems. However, the electrical properties and crossbar structure of memristors make these accelerators error-prone. To enable reliable memristor-based accelerators, a simulation platform is needed to precisely analyze the impact of non-ideal circuit and device properties on the inference accuracy. In this paper, we propose a flexible simulation framework, DL-RSIM, to tackle this challenge. DL-RSIM simulates the error rates of every sum-of-products computation in the memristor-based accelerator and injects the errors in the targeted TensorFlow-based neural network model. A rich set of reliability impact factors are explored by DL-RSIM, and it can be incorporated with any deep learning neural network implemented by TensorFlow. Using three representative convolutional neural networks as case studies, we show that DL-RSIM can guide chip designers to choose a reliability-friendly design option and develop reliability optimization techniques.\",\"PeriodicalId\":413037,\"journal\":{\"name\":\"2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"54\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3240765.3240800\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3240765.3240800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
DL-RSIM: A Simulation Framework to Enable Reliable ReRAM-based Accelerators for Deep Learning
Memristor-based deep learning accelerators provide a promising solution to improve the energy efficiency of neuromorphic computing systems. However, the electrical properties and crossbar structure of memristors make these accelerators error-prone. To enable reliable memristor-based accelerators, a simulation platform is needed to precisely analyze the impact of non-ideal circuit and device properties on the inference accuracy. In this paper, we propose a flexible simulation framework, DL-RSIM, to tackle this challenge. DL-RSIM simulates the error rates of every sum-of-products computation in the memristor-based accelerator and injects the errors in the targeted TensorFlow-based neural network model. A rich set of reliability impact factors are explored by DL-RSIM, and it can be incorporated with any deep learning neural network implemented by TensorFlow. Using three representative convolutional neural networks as case studies, we show that DL-RSIM can guide chip designers to choose a reliability-friendly design option and develop reliability optimization techniques.