向量空间模型下信息过滤的索引结构

T. Yan, H. Garcia-Molina
{"title":"向量空间模型下信息过滤的索引结构","authors":"T. Yan, H. Garcia-Molina","doi":"10.1109/ICDE.1994.283049","DOIUrl":null,"url":null,"abstract":"The authors study what data structures and algorithms can be used to efficiently perform large-scale information filtering under the vector space model, a retrieval model established as being effective. They apply the idea of the standard inverted index to index user profiles. They devise an alternative to the standard inverted index, in which they, instead of indexing every term in a profile, select only the significant ones to index. They evaluate their performance and show that the indexing methods require orders of magnitude fewer I/Os to process a document than when no index is used. They also show that the proposed alternative performs better in terms of I/O and CPU processing time in many cases.<<ETX>>","PeriodicalId":142465,"journal":{"name":"Proceedings of 1994 IEEE 10th International Conference on Data Engineering","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"89","resultStr":"{\"title\":\"Index structures for information filtering under the vector space model\",\"authors\":\"T. Yan, H. Garcia-Molina\",\"doi\":\"10.1109/ICDE.1994.283049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors study what data structures and algorithms can be used to efficiently perform large-scale information filtering under the vector space model, a retrieval model established as being effective. They apply the idea of the standard inverted index to index user profiles. They devise an alternative to the standard inverted index, in which they, instead of indexing every term in a profile, select only the significant ones to index. They evaluate their performance and show that the indexing methods require orders of magnitude fewer I/Os to process a document than when no index is used. They also show that the proposed alternative performs better in terms of I/O and CPU processing time in many cases.<<ETX>>\",\"PeriodicalId\":142465,\"journal\":{\"name\":\"Proceedings of 1994 IEEE 10th International Conference on Data Engineering\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"89\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 IEEE 10th International Conference on Data Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.1994.283049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE 10th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.1994.283049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 89

摘要

作者研究了在有效的检索模型向量空间模型下,可以使用哪些数据结构和算法来高效地进行大规模信息过滤。它们将标准倒排索引的思想应用于索引用户配置文件。他们设计了一种标准倒排索引的替代方法,在这种方法中,他们不索引配置文件中的每个术语,而是只选择重要的术语进行索引。他们评估了它们的性能,并表明索引方法处理文档所需的I/ o比不使用索引时少了几个数量级。他们还表明,在许多情况下,所提出的替代方案在I/O和CPU处理时间方面表现更好
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Index structures for information filtering under the vector space model
The authors study what data structures and algorithms can be used to efficiently perform large-scale information filtering under the vector space model, a retrieval model established as being effective. They apply the idea of the standard inverted index to index user profiles. They devise an alternative to the standard inverted index, in which they, instead of indexing every term in a profile, select only the significant ones to index. They evaluate their performance and show that the indexing methods require orders of magnitude fewer I/Os to process a document than when no index is used. They also show that the proposed alternative performs better in terms of I/O and CPU processing time in many cases.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信