从视频中学习运动机器模型

Lucas Thies, M. Stamminger, F. Bauer
{"title":"从视频中学习运动机器模型","authors":"Lucas Thies, M. Stamminger, F. Bauer","doi":"10.1109/AIVR50618.2020.00028","DOIUrl":null,"url":null,"abstract":"VR/AR applications, such as virtual training or coaching, often require a digital twin of a machine. Such a virtual twin must also include a kinematic model that defines its motion behavior. This behavior is usually expressed by constraints in a physics engine. In this paper, we present a system that automatically derives the kinematic model of a machine from RGB video with an optional depth channel. Our system records a live session while a user performs all typical machine movements. It then searches for trajectories and converts them into linear, circular and helical constraints. Our system can also detect kinematic chains and coupled constraints, for example, when a crank moves a toothed rod.","PeriodicalId":348199,"journal":{"name":"2020 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning Kinematic Machine Models from Videos\",\"authors\":\"Lucas Thies, M. Stamminger, F. Bauer\",\"doi\":\"10.1109/AIVR50618.2020.00028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"VR/AR applications, such as virtual training or coaching, often require a digital twin of a machine. Such a virtual twin must also include a kinematic model that defines its motion behavior. This behavior is usually expressed by constraints in a physics engine. In this paper, we present a system that automatically derives the kinematic model of a machine from RGB video with an optional depth channel. Our system records a live session while a user performs all typical machine movements. It then searches for trajectories and converts them into linear, circular and helical constraints. Our system can also detect kinematic chains and coupled constraints, for example, when a crank moves a toothed rod.\",\"PeriodicalId\":348199,\"journal\":{\"name\":\"2020 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIVR50618.2020.00028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIVR50618.2020.00028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

VR/AR应用,如虚拟培训或指导,通常需要机器的数字孪生体。这样的虚拟双胞胎还必须包括定义其运动行为的运动学模型。这种行为通常通过物理引擎中的约束来表达。在本文中,我们提出了一个从RGB视频中自动提取机器运动模型的系统,该系统具有可选的深度通道。当用户执行所有典型的机器动作时,我们的系统会记录一个实时会话。然后,它搜索轨迹并将其转换为线性、圆形和螺旋约束。我们的系统还可以检测运动链和耦合约束,例如,当曲柄移动齿杆时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Kinematic Machine Models from Videos
VR/AR applications, such as virtual training or coaching, often require a digital twin of a machine. Such a virtual twin must also include a kinematic model that defines its motion behavior. This behavior is usually expressed by constraints in a physics engine. In this paper, we present a system that automatically derives the kinematic model of a machine from RGB video with an optional depth channel. Our system records a live session while a user performs all typical machine movements. It then searches for trajectories and converts them into linear, circular and helical constraints. Our system can also detect kinematic chains and coupled constraints, for example, when a crank moves a toothed rod.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信