基于小波神经网络的AOD炉炼钢终点预测

Yangxiao Hong, Xu Jing, Yanghong Tao
{"title":"基于小波神经网络的AOD炉炼钢终点预测","authors":"Yangxiao Hong, Xu Jing, Yanghong Tao","doi":"10.1109/CCDC.2010.5498689","DOIUrl":null,"url":null,"abstract":"The AOD stove ferroalloy steel-making endpoint temperature and the ingredient are the control objectives of AOD stove ferroalloy steel-making, which has serious nonlinear relations with variables such as oxygen blown quantity and the quantity of molten steel and is unable to measure continuously online. This article develops a set of AOD stove smelt ferroalloy end-point control model based on the wavelet neural network and some actual data of a 180t AOD ferroalloy stove in Jilin Ferroalloy Factory to conduct the model verification research. By forecasting the end-point temperature and the carbon content and gathering the spot operating data and the practical application, we can see that the double hit probability of carbon and temperature reaches above 80%.","PeriodicalId":227938,"journal":{"name":"2010 Chinese Control and Decision Conference","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The endpoint forecast of AOD stove ferroalloy steel-making based on wavelet neural network\",\"authors\":\"Yangxiao Hong, Xu Jing, Yanghong Tao\",\"doi\":\"10.1109/CCDC.2010.5498689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The AOD stove ferroalloy steel-making endpoint temperature and the ingredient are the control objectives of AOD stove ferroalloy steel-making, which has serious nonlinear relations with variables such as oxygen blown quantity and the quantity of molten steel and is unable to measure continuously online. This article develops a set of AOD stove smelt ferroalloy end-point control model based on the wavelet neural network and some actual data of a 180t AOD ferroalloy stove in Jilin Ferroalloy Factory to conduct the model verification research. By forecasting the end-point temperature and the carbon content and gathering the spot operating data and the practical application, we can see that the double hit probability of carbon and temperature reaches above 80%.\",\"PeriodicalId\":227938,\"journal\":{\"name\":\"2010 Chinese Control and Decision Conference\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Chinese Control and Decision Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCDC.2010.5498689\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Chinese Control and Decision Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCDC.2010.5498689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

AOD炉炼钢终点温度和配料是AOD炉炼钢的控制目标,与吹氧量、钢水量等变量存在严重的非线性关系,无法在线连续测量。本文结合吉林铁合金厂180t AOD铁合金炉的实际数据,开发了一套基于小波神经网络的AOD炉冶炼铁合金终点控制模型,进行了模型验证研究。通过对终点温度和含碳量的预测,收集现场运行数据和实际应用,可以看出,碳和温度的双命中概率达到80%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The endpoint forecast of AOD stove ferroalloy steel-making based on wavelet neural network
The AOD stove ferroalloy steel-making endpoint temperature and the ingredient are the control objectives of AOD stove ferroalloy steel-making, which has serious nonlinear relations with variables such as oxygen blown quantity and the quantity of molten steel and is unable to measure continuously online. This article develops a set of AOD stove smelt ferroalloy end-point control model based on the wavelet neural network and some actual data of a 180t AOD ferroalloy stove in Jilin Ferroalloy Factory to conduct the model verification research. By forecasting the end-point temperature and the carbon content and gathering the spot operating data and the practical application, we can see that the double hit probability of carbon and temperature reaches above 80%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信