有主要参与者的线性二次平均场博弈:纳什确定性等价与主方程

Minyi Huang
{"title":"有主要参与者的线性二次平均场博弈:纳什确定性等价与主方程","authors":"Minyi Huang","doi":"10.4310/CIS.2021.V21.N3.A6","DOIUrl":null,"url":null,"abstract":"Mean field games with a major player were introduced in (Huang, 2010) within a linear-quadratic (LQ) modeling framework. Due to the rich structure of major-minor player models, the past ten years have seen significant research efforts for different solution notions and analytical techniques. For LQ models, we address the relation between three solution frameworks: the Nash certainty equivalence (NCE) approach in (Huang, 2010), master equations, and asymptotic solvability, which have been developed starting with different ideas. We establish their equivalence relationships.","PeriodicalId":185710,"journal":{"name":"Commun. Inf. Syst.","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Linear-quadratic mean field games with a major player: Nash certainty equivalence versus master equations\",\"authors\":\"Minyi Huang\",\"doi\":\"10.4310/CIS.2021.V21.N3.A6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mean field games with a major player were introduced in (Huang, 2010) within a linear-quadratic (LQ) modeling framework. Due to the rich structure of major-minor player models, the past ten years have seen significant research efforts for different solution notions and analytical techniques. For LQ models, we address the relation between three solution frameworks: the Nash certainty equivalence (NCE) approach in (Huang, 2010), master equations, and asymptotic solvability, which have been developed starting with different ideas. We establish their equivalence relationships.\",\"PeriodicalId\":185710,\"journal\":{\"name\":\"Commun. Inf. Syst.\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Commun. Inf. Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/CIS.2021.V21.N3.A6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Commun. Inf. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/CIS.2021.V21.N3.A6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

(Huang, 2010)在线性二次(LQ)建模框架内引入了具有主要参与者的平均场博弈。由于主次参与者模型的丰富结构,在过去的十年里,人们对不同的解概念和分析技术进行了大量的研究。对于LQ模型,我们讨论了三个解决框架之间的关系:(Huang, 2010)中的纳什确定性等价(NCE)方法、主方程和渐近可解性,它们是从不同的思想开始发展的。我们建立了它们的等价关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linear-quadratic mean field games with a major player: Nash certainty equivalence versus master equations
Mean field games with a major player were introduced in (Huang, 2010) within a linear-quadratic (LQ) modeling framework. Due to the rich structure of major-minor player models, the past ten years have seen significant research efforts for different solution notions and analytical techniques. For LQ models, we address the relation between three solution frameworks: the Nash certainty equivalence (NCE) approach in (Huang, 2010), master equations, and asymptotic solvability, which have been developed starting with different ideas. We establish their equivalence relationships.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信