{"title":"统一潮流控制器的潮流控制能力分析","authors":"Singh Satyavir","doi":"10.26634/jps.10.2.18808","DOIUrl":null,"url":null,"abstract":"In the field of power system restructuring, Flexible Alternating Current Transmission System (FACTS) technology has become indispensable for alleviating the challenges of load flow control, voltage control, transient stability, and dynamic stability. The Unified Power Flow Controller (UPFC) is the fastest, most flexible, and most capable FACTS device because it has the full advantage of providing simultaneous and independent real-time control of voltage, impedance, and phase angle, which are the main power system parameters that affect system performance. This paper uses a Newton-Raphson load flow that includes UPFC to analyze how UPFC can control the flow of power.","PeriodicalId":421955,"journal":{"name":"i-manager's Journal on Power Systems Engineering","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Power flow control capability analysis of unified power flow controller\",\"authors\":\"Singh Satyavir\",\"doi\":\"10.26634/jps.10.2.18808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the field of power system restructuring, Flexible Alternating Current Transmission System (FACTS) technology has become indispensable for alleviating the challenges of load flow control, voltage control, transient stability, and dynamic stability. The Unified Power Flow Controller (UPFC) is the fastest, most flexible, and most capable FACTS device because it has the full advantage of providing simultaneous and independent real-time control of voltage, impedance, and phase angle, which are the main power system parameters that affect system performance. This paper uses a Newton-Raphson load flow that includes UPFC to analyze how UPFC can control the flow of power.\",\"PeriodicalId\":421955,\"journal\":{\"name\":\"i-manager's Journal on Power Systems Engineering\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"i-manager's Journal on Power Systems Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26634/jps.10.2.18808\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"i-manager's Journal on Power Systems Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26634/jps.10.2.18808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在电力系统重构领域,柔性交流输电系统(FACTS)技术已成为缓解潮流控制、电压控制、暂态稳定和动态稳定挑战不可或缺的技术。统一潮流控制器(Unified Power Flow Controller, UPFC)是最快、最灵活、功能最强大的FACTS设备,因为它具有对影响系统性能的主要电力系统参数电压、阻抗和相角进行同时和独立实时控制的全部优势。本文使用包含UPFC的Newton-Raphson负载流来分析UPFC如何控制功率流。
Power flow control capability analysis of unified power flow controller
In the field of power system restructuring, Flexible Alternating Current Transmission System (FACTS) technology has become indispensable for alleviating the challenges of load flow control, voltage control, transient stability, and dynamic stability. The Unified Power Flow Controller (UPFC) is the fastest, most flexible, and most capable FACTS device because it has the full advantage of providing simultaneous and independent real-time control of voltage, impedance, and phase angle, which are the main power system parameters that affect system performance. This paper uses a Newton-Raphson load flow that includes UPFC to analyze how UPFC can control the flow of power.