孤立希腊手写体字符识别的高效特征提取与降维方案

G. Vamvakas, B. Gatos, Sergios Petridis, N. Stamatopoulos
{"title":"孤立希腊手写体字符识别的高效特征提取与降维方案","authors":"G. Vamvakas, B. Gatos, Sergios Petridis, N. Stamatopoulos","doi":"10.1109/ICDAR.2007.49","DOIUrl":null,"url":null,"abstract":"In this paper, we present an off-line methodology for isolated Greek handwritten character recognition based on efficient feature extraction followed by a suitable feature vector dimensionality reduction scheme. Extracted features are based on (i) horizontal and vertical zones, (ii) the projections of the character profiles, (Hi) distances from the character boundaries and (iv) profiles from the character edges. The combination of these types of features leads to a 325- dimensional feature vector. At a next step, a dimensionality reduction technique is applied, according to which the dimension of the feature space is lowered down to comprise only the features pertinent to the discrimination of characters into the given set of letters. In this paper, we also present a new Greek handwritten database of 36,960 characters that we created in order to measure the performance of the proposed methodology.","PeriodicalId":279268,"journal":{"name":"Ninth International Conference on Document Analysis and Recognition (ICDAR 2007)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"An Efficient Feature Extraction and Dimensionality Reduction Scheme for Isolated Greek Handwritten Character Recognition\",\"authors\":\"G. Vamvakas, B. Gatos, Sergios Petridis, N. Stamatopoulos\",\"doi\":\"10.1109/ICDAR.2007.49\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present an off-line methodology for isolated Greek handwritten character recognition based on efficient feature extraction followed by a suitable feature vector dimensionality reduction scheme. Extracted features are based on (i) horizontal and vertical zones, (ii) the projections of the character profiles, (Hi) distances from the character boundaries and (iv) profiles from the character edges. The combination of these types of features leads to a 325- dimensional feature vector. At a next step, a dimensionality reduction technique is applied, according to which the dimension of the feature space is lowered down to comprise only the features pertinent to the discrimination of characters into the given set of letters. In this paper, we also present a new Greek handwritten database of 36,960 characters that we created in order to measure the performance of the proposed methodology.\",\"PeriodicalId\":279268,\"journal\":{\"name\":\"Ninth International Conference on Document Analysis and Recognition (ICDAR 2007)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ninth International Conference on Document Analysis and Recognition (ICDAR 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDAR.2007.49\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ninth International Conference on Document Analysis and Recognition (ICDAR 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2007.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

摘要

在本文中,我们提出了一种离线的孤立希腊手写字符识别方法,该方法基于有效的特征提取,然后是合适的特征向量降维方案。提取的特征是基于(i)水平和垂直区域,(ii)字符轮廓的投影,(Hi)到字符边界的距离,(iv)到字符边缘的轮廓。这些类型的特征的组合导致325维特征向量。下一步,应用降维技术,根据该技术,特征空间的维数被降低,仅包含与将字符区分为给定字母集相关的特征。在本文中,我们还提出了一个新的希腊文手写数据库,该数据库包含36,960个字符,我们创建了该数据库,以衡量所提出方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Efficient Feature Extraction and Dimensionality Reduction Scheme for Isolated Greek Handwritten Character Recognition
In this paper, we present an off-line methodology for isolated Greek handwritten character recognition based on efficient feature extraction followed by a suitable feature vector dimensionality reduction scheme. Extracted features are based on (i) horizontal and vertical zones, (ii) the projections of the character profiles, (Hi) distances from the character boundaries and (iv) profiles from the character edges. The combination of these types of features leads to a 325- dimensional feature vector. At a next step, a dimensionality reduction technique is applied, according to which the dimension of the feature space is lowered down to comprise only the features pertinent to the discrimination of characters into the given set of letters. In this paper, we also present a new Greek handwritten database of 36,960 characters that we created in order to measure the performance of the proposed methodology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信