Zhilong Lu, Weifeng Lv, Zhipu Xie, Bowen Du, Guixi Xiong, Leilei Sun, Haiquan Wang
{"title":"基于注意机制的图序列神经网络交通速度预测","authors":"Zhilong Lu, Weifeng Lv, Zhipu Xie, Bowen Du, Guixi Xiong, Leilei Sun, Haiquan Wang","doi":"10.1145/3470889","DOIUrl":null,"url":null,"abstract":"Recent years have witnessed the emerging success of Graph Neural Networks (GNNs) for modeling graphical data. A GNN can model the spatial dependencies of nodes in a graph based on message passing through node aggregation. However, in many application scenarios, these spatial dependencies can change over time, and a basic GNN model cannot capture these changes. In this article, we propose a Graph Sequence neural network with an Attention mechanism (GSeqAtt) for processing graph sequences. More specifically, two attention mechanisms are combined: a horizontal mechanism and a vertical mechanism. GTransformer, which is a horizontal attention mechanism for handling time series, is used to capture the correlations between graphs in the input time sequence. The vertical attention mechanism, a Graph Network (GN) block structure with an attention mechanism (GNAtt), acts within the graph structure in each frame of the time series. Experiments show that our proposed model is able to handle information propagation for graph sequences accurately and efficiently. Moreover, results on real-world data from three road intersections show that our GSeqAtt outperforms state-of-the-art baselines on the traffic speed prediction task.","PeriodicalId":123526,"journal":{"name":"ACM Transactions on Intelligent Systems and Technology (TIST)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Graph Sequence Neural Network with an Attention Mechanism for Traffic Speed Prediction\",\"authors\":\"Zhilong Lu, Weifeng Lv, Zhipu Xie, Bowen Du, Guixi Xiong, Leilei Sun, Haiquan Wang\",\"doi\":\"10.1145/3470889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent years have witnessed the emerging success of Graph Neural Networks (GNNs) for modeling graphical data. A GNN can model the spatial dependencies of nodes in a graph based on message passing through node aggregation. However, in many application scenarios, these spatial dependencies can change over time, and a basic GNN model cannot capture these changes. In this article, we propose a Graph Sequence neural network with an Attention mechanism (GSeqAtt) for processing graph sequences. More specifically, two attention mechanisms are combined: a horizontal mechanism and a vertical mechanism. GTransformer, which is a horizontal attention mechanism for handling time series, is used to capture the correlations between graphs in the input time sequence. The vertical attention mechanism, a Graph Network (GN) block structure with an attention mechanism (GNAtt), acts within the graph structure in each frame of the time series. Experiments show that our proposed model is able to handle information propagation for graph sequences accurately and efficiently. Moreover, results on real-world data from three road intersections show that our GSeqAtt outperforms state-of-the-art baselines on the traffic speed prediction task.\",\"PeriodicalId\":123526,\"journal\":{\"name\":\"ACM Transactions on Intelligent Systems and Technology (TIST)\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Intelligent Systems and Technology (TIST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3470889\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Intelligent Systems and Technology (TIST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3470889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Graph Sequence Neural Network with an Attention Mechanism for Traffic Speed Prediction
Recent years have witnessed the emerging success of Graph Neural Networks (GNNs) for modeling graphical data. A GNN can model the spatial dependencies of nodes in a graph based on message passing through node aggregation. However, in many application scenarios, these spatial dependencies can change over time, and a basic GNN model cannot capture these changes. In this article, we propose a Graph Sequence neural network with an Attention mechanism (GSeqAtt) for processing graph sequences. More specifically, two attention mechanisms are combined: a horizontal mechanism and a vertical mechanism. GTransformer, which is a horizontal attention mechanism for handling time series, is used to capture the correlations between graphs in the input time sequence. The vertical attention mechanism, a Graph Network (GN) block structure with an attention mechanism (GNAtt), acts within the graph structure in each frame of the time series. Experiments show that our proposed model is able to handle information propagation for graph sequences accurately and efficiently. Moreover, results on real-world data from three road intersections show that our GSeqAtt outperforms state-of-the-art baselines on the traffic speed prediction task.