面向反翻译的无监督统计机器翻译研究

Anush Kumar, Nihal V. Nayak, Aditya Chandra, Mydhili K. Nair
{"title":"面向反翻译的无监督统计机器翻译研究","authors":"Anush Kumar, Nihal V. Nayak, Aditya Chandra, Mydhili K. Nair","doi":"10.26615/978-954-452-056-4_068","DOIUrl":null,"url":null,"abstract":"Machine Translation systems have drastically improved over the years for several language pairs. Monolingual data is often used to generate synthetic sentences to augment the training data which has shown to improve the performance of machine translation models. In our paper, we make use of an Unsupervised Statistical Machine Translation (USMT) to generate synthetic sentences. Our study compares the performance improvements in Neural Machine Translation model when using synthetic sentences from supervised and unsupervised Machine Translation models. Our approach of using USMT for backtranslation shows promise in low resource conditions and achieves an improvement of 3.2 BLEU score over the Neural Machine Translation model.","PeriodicalId":284493,"journal":{"name":"Recent Advances in Natural Language Processing","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on Unsupervised Statistical Machine Translation for Backtranslation\",\"authors\":\"Anush Kumar, Nihal V. Nayak, Aditya Chandra, Mydhili K. Nair\",\"doi\":\"10.26615/978-954-452-056-4_068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine Translation systems have drastically improved over the years for several language pairs. Monolingual data is often used to generate synthetic sentences to augment the training data which has shown to improve the performance of machine translation models. In our paper, we make use of an Unsupervised Statistical Machine Translation (USMT) to generate synthetic sentences. Our study compares the performance improvements in Neural Machine Translation model when using synthetic sentences from supervised and unsupervised Machine Translation models. Our approach of using USMT for backtranslation shows promise in low resource conditions and achieves an improvement of 3.2 BLEU score over the Neural Machine Translation model.\",\"PeriodicalId\":284493,\"journal\":{\"name\":\"Recent Advances in Natural Language Processing\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent Advances in Natural Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26615/978-954-452-056-4_068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Advances in Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26615/978-954-452-056-4_068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多年来,机器翻译系统在一些语言对方面取得了巨大的进步。单语数据通常用于生成合成句子,以增强训练数据,从而提高机器翻译模型的性能。在我们的论文中,我们使用无监督统计机器翻译(USMT)来生成合成句子。我们的研究比较了神经机器翻译模型在使用有监督和无监督机器翻译模型合成句子时的性能改进。我们使用USMT进行反翻译的方法在低资源条件下显示出希望,并且比神经机器翻译模型实现了3.2 BLEU分数的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on Unsupervised Statistical Machine Translation for Backtranslation
Machine Translation systems have drastically improved over the years for several language pairs. Monolingual data is often used to generate synthetic sentences to augment the training data which has shown to improve the performance of machine translation models. In our paper, we make use of an Unsupervised Statistical Machine Translation (USMT) to generate synthetic sentences. Our study compares the performance improvements in Neural Machine Translation model when using synthetic sentences from supervised and unsupervised Machine Translation models. Our approach of using USMT for backtranslation shows promise in low resource conditions and achieves an improvement of 3.2 BLEU score over the Neural Machine Translation model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信